Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебники 705.doc
Скачиваний:
13
Добавлен:
01.05.2022
Размер:
18.91 Mб
Скачать

ББК 32.884

Никитин Л.Н. Стандарты сжатия и запись изображений : учеб. пособие [Электронный ресурс]. – Электрон. текстовые, граф. данные (18,4 Мб) / Л.Н. Никитин. – Воронеж : ФГБОУ ВПО «Воронежский государственный технический университет», 2014. – 1 электрон. опт. диск (CD-ROM). – Систем. требования: ПК 500 и выше ; 256 Мб ОЗУ ; Windows XP ; MS Word 2003 или более поздняя версия ; 1024x768 ; CD-ROM ; мышь. – Загл. с экрана. – Диск и сопровод. материал помещены в контейнер 12x14 см.

В учебном пособии рассмотрены наиболее перспективные алгоритмы сжатия изображений, и основные форматы сжатия видеоданных, структура, виды и способы записи DVD.

Учебное пособие соответствует требованиям Государственного образовательного стандарта высшего профессионального образования по направлению 211000 «Конструирование и технология электронных средств». Предназначено для бакалавров 4 курса дневной и заочной форм обучения изучающих дисциплину «Основы цифровой обработки видеосигнала».

Табл. 9. Ил. 24. Библиогр.: 11 назв.

Рецензенты: ОАО «Видеофон»

(генеральный директор С.Д. Кретов);

проф. д.т.н. В.М. Питолин

© Никитин Л.Н., 2014

© Оформление. ФГБОУ ВПО «Воронежский государственный технический университет», 2014

Введение

Подавляющее большинство современных форматов записи данных содержат в виде, удобном для быстрого манипулирования, для удобного прочтения пользователями. При этом данные занимают объем больший, чем это действительно требуется для их хранения. Алгоритмы, устраняющие избыточность записи данных, называются алгоритмами сжатия данных, или алгоритмами архивации. В настоящее время существует огромное множество программ для сжатия данных, основанных на нескольких основных способах.

Именно компрессия позволяет значительно увеличить пропускную способность линий передачи информации при относительно небольших затратах на приобретение спец. оборудования и ПО [1]. При этом "прозрачная" работа удаленного пользователя в сети корпорации может быть обеспечена даже при передаче данных по обычным аналоговым телефонным линиям. Помимо выигрыша в скорости передачи больших объемов данных на большие расстояния, компрессия также является дополнительной мерой обеспечения защиты конфиденциальной информации при попытке ее несанкционированного перехвата.

Теоретические основы методов сжатия информации были заложены в конце 40-х годов, когда была опубликована статья Клода Шеннона (Claude Shannon) "Математическая теория коммуникаций". В ней впервые было сформулировано положение о том, что энтропия любого блока информации равна вероятности его появления во всем массиве данных. Соответственно, наиболее часто повторяющиеся блоки являются и наиболее "избыточными" (redundant) и могут быть представлены в более сжатом виде.

Глава 1. Алгоритмы сжатия изображений

    1. Классы изображений

Статические растровые изображения представляют собой двумерный массив чисел [2]. Элементы этого массива называют пикселами (от английского pixel - picture element). Все изображения можно подразделить на две группы - с палитрой и без нее. У изображений с палитрой в пикселе хранится число - индекс в некотором одномерном векторе цветов, называемом палитрой. Чаще всего встречаются палитры из 16 и 256 цветов.

Изображения без палитры бывают в какой-либо системе цветопредставления и в градациях серого (grayscale). Для последних значение каждого пиксела интерпретируется как яркость соответствующей точки. Встречаются изображения с 2, 16 и 256 уровнями серого. Одна из интересных практических задач заключается в приведении цветного или черно-белого изображения к двум градациям яркости, например, для печати на лазерном принтере. При использовании некой системы цветопредставления каждый пиксел представляет собой запись (структуру), полями которой являются компоненты цвета. Самой распространенной является система RGB, в которой цвет представлен значениями интенсивности красной (R), зеленой (G) и синей (B) компонент. Существуют и другие системы цветопредставления, такие, как CMYK, CIE XYZccir60-1 и т.п. Ниже мы увидим, как используются цветовые модели при сжатии изображений с потерями.

Для того чтобы корректнее оценивать степень сжатия, нужно ввести понятие класса изображений. Под классом будет пониматься некая совокупность изображений, применение к которым алгоритма архивации дает качественно одинаковые результаты. Например, для одного класса алгоритм дает очень высокую степень сжатия, для другого - почти не сжимает, для третьего - увеличивает файл в размере. (Известно, что многие алгоритмы в худшем случае увеличивают файл.)

Рассмотрим следующие примеры неформального определения классов изображений:

Класс 1. Изображения с небольшим количеством цветов (4-16) и большими областями, заполненными одним цветом. Плавные переходы цветов отсутствуют. Примеры: деловая графика - гистограммы, диаграммы, графики и т.п.

Класс 2. Изображения, с плавными переходами цветов, построенные на компьютере. Примеры: графика презентаций, эскизные модели в САПР, изображения, построенные по методу Гуро.

Класс 3. Фотореалистичные изображения. Пример: отсканированные фотографии.

Класс 4. Фотореалистичные изображения с наложением деловой графики. Пример: реклама.

Развивая данную классификацию, в качестве отдельных классов могут быть предложены некачественно отсканированные в 256 градаций серого цвета страницы книг или растровые изображения топографических карт. (Заметим, что этот класс не тождественен классу 4). Формально являясь 8- или 24-битными, они несут даже не растровую, а чисто векторную информацию. Отдельные классы могут образовывать и совсем специфичные изображения: рентгеновские снимки или фотографии в профиль и фас из электронного досье.

Достаточно сложной и интересной задачей является поиск наилучшего алгоритма для конкретного класса изображений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]