
- •Часть 1
- •Введение
- •I. Основные понятия и аксиомы. Сходящиеся силы
- •§ 1. Основные понятия и определения
- •§ 2. Аксиомы статики
- •§ 3. Простейшие теоремы статики
- •§ 4. Система сходящихся сил
- •П риведение к равнодействующей силе
- •Условия равновесия системы сходящихся сил
- •Проецирование силы на оси координат
- •II. Моменты силы относительно точки и оси
- •§ 1. Алгебраический момент силы относительно точки
- •§ 2. Векторный момент силы относительно точки
- •§ 3. Момент силы относительно оси
- •§ 4. Связь момента силы относительно оси с векторным моментом силы относительно точки на оси
- •§ 5. Формулы для моментов силы относительно осей координат
- •III. Теория пар сил
- •§ 1. Пара сил и алгебраический момент пары сил
- •§ 2. Теорема об эквивалентности двух пар сил, расположенных в одной плоскости
- •§ 3. Теорема об эквивалентности двух пар сил, расположенных в одной плоскости
- •§ 4. Векторный момент пары сил
- •§ 5. Эквивалентность пар сил
- •§ 6. Теорема о сумме моментов сил пары
- •§ 7. Сложение пар сил
- •§ 8. Равновесие пар сил
- •IV. Приведение системы сил к простейшей системе. Условия равновесия
- •§ 1. Приведение произвольной системы сил к силе и паре сил
- •Приведение силы к заданному центру
- •П риведение произвольной системы сил к силе и паре сил
- •Приведение плоской системы сил
- •Формулы для вычисления главного вектора и главного момента
- •§ 2. Условия равновесия системы сил Условия равновесия системы сил в векторной форме
- •Условия равновесия пространственной системы сил в аналитической форме
- •Условия равновесия пространственной системы параллельных сил
- •Условия равновесия плоской системы сил
- •V. Плоская система сил. Теорема вариньона
- •§ 1. Частные случаи приведения плоской системы сил
- •Случай приведения к равнодействующей силе
- •Случай приведения к паре сил
- •§ 2. Теорема о моменте равнодействующей силы (Теорема Вариньона)
- •§ 3. Различные формы условий равновесия плоской системы сил
- •Теорема о трех моментах (вторая форма условий равновесия)
- •Третья форма условий равновесия
- •§ 4. Статически определимые и статически неопределимые задачи
- •§ 5. Равновесие системы тел
- •§ 6. Распределенные силы
- •Параллельные силы постоянной интенсивности, распределенные по отрезку прямой линии
- •Параллельные силы, распределенные по отрезку прямой с интенсивностью, изменяющейся по линейному закону
- •Реакция заделки
- •§7. Решение задач на равновесие плоской системы сил, приложенных к твердому телу и системе тел
- •VI. Трение
- •§ 1. Трение скольжения
- •Законы Кулона
- •Угол и конус трения
- •Равновесие тела на шероховатой поверхности
- •§2. Трение качения
- •VII. Частные случаи пространственных систем сил. Центр параллельных сил
- •§ 1. Изменение главного момента при перемене центра приведения
- •§ 2. Инварианты системы сил
- •§ 3. Частные случаи приведения пространственной системы сил
- •§4. Уравнение центральной винтовой оси
- •§5. Частные случаи приведения пространственной системы параллельных сил
- •§6. Центр системы параллельных сил
- •§7. Частные случаи равновесия твердого тела Равновесие твердого тела с двумя закрепленными точками
- •Твердое тело с одной закрепленной точкой
- •Библиографический список
- •Оглавление
- •II. Моменты силы относительно точки и оси………………... 24
- •III. Теория пар сил……………………………………………... 32
- •IV. Приведение системы сил к простейшей системе. Условия равновесия…………………………………………… 44
- •V. Плоская система сил. Теорема Вариньона………………... 55
- •VI. Трение………………………………………………………. 73
- •VII. Частные случаи пространственных систем сил. Центр параллельных сил………………………………………. 86
- •Библиографический список………………………………….. 104
- •Часть 1
- •394026 Воронеж, Московский просп., 14
§ 2. Теорема о моменте равнодействующей силы (Теорема Вариньона)
Д
Рис. 35
Пусть на твердое тело действует любая система сил (рис. 35), имеющая равнодействующую , т. е.
~ . (46)
Добавим
к заданной системе сил ее уравновешивающую
силу
,
которая равна по модулю, но противоположна
по направлению равнодействующей силе
и имеет с ней общую линию действия. Тогда
~
,
(47)
т.е. при добавлении к системе сил уравновешивающей силы, согласно определению уравновешивающей силы, образуется новая система сил, эквивалентная нулю и, следовательно, удовлетворяющая условиям равновесия системы сил, приложенных к твердому телу. В частности, сумма векторных моментов сил этой новой системы сил относительно любой точки О равна нулю:
,
но
,
так как и – две равные и противоположно направленные силы, действующие вдоль одной прямой. Получаем:
.
Отсюда следует теорема Вариньона:
. (48)
Если правую и левую части векторного равенства (48) спроецировать на произвольную ось Оz, проходящую через точку О, то, учитывая связь момента силы относительно оси с проекцией векторного момента относительно точки на оси, получим теорему Вариньона относительно оси Оz:
, (49)
т.е. момент равнодействующей силы относительно произвольной оси равен сумме моментов сил системы относительно той же оси.
Для случая плоской системы сил, если точку О выбрать в плоскости действия сил, из (48) получаем:
. (50)
Это теорема Вариньона для плоской системы сил: алгебраический момент равнодействующей плоской системы сил относительно любой точки, лежащей в плоскости действия сил, равен сумме алгебраических моментов всех сил этой системы относительно той же точки.
§ 3. Различные формы условий равновесия плоской системы сил
В § 2 гл. IV получены общие условия равновесия плоской системы сил, действующих на твердое тело, в следующей форме:
.
(51)
Условия равновесия (51) назовем условиями равновесия плоской системы сил в первой форме.
Условия равновесия плоской системы сил, приложенных к твердому телу, можно сформулировать в других эквивалентных формах. Существуют еще две эквивалентные формы необходимых и достаточных условий равновесия.
Рассмотрим эти условия равновесия в виде теоремы о трех моментах и третьей формы условий равновесия.
Теорема о трех моментах (вторая форма условий равновесия)
Для равновесия плоской системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы суммы алгебраических моментов сил системы относительно трех любых точек, расположенных в плоскости действия сил и не лежащих на одной прямой, были равны нулю, т.е.
. (52)
Н
Рис. 36
еобходимость
этих условий равновесия плоской системы
сил обусловлена тем, что если плоская
система сил находится в равновесии, то
силы этой системы удовлетворяют условиям
равновесия в первой основной форме
(51). А тогда из последнего условия (51)
следует, что сумма алгебраических
моментов сил относительно любой точки
(следовательно, и точек А, В, С) равна
нулю (рис. 36).
Для доказательства достаточности условий (52) для равновесия плоской системы сил, действующих на твердое тело, можно привести следующие рассуждения. Так как главные моменты относительно трех точек А, В и С равны нулю, то для любой из этих точек, взятых за центр приведения, система приводится или к равнодействующей, если главный вектор системы отличен от нуля, или система сил оказывается в равновесии, если главный вектор системы равен нулю. Предположим, что она приводится к равнодействующей силе . Тогда если выбрать за центр приведения точку А, то, используя теорему Вариньона (50), согласно (52), получим
.
Выбрав за центр приведения точку В, аналогично имеем
.
Эти условия для равнодействующей силы , отличной от нуля, могут выполняться в том случае, если линия действия равнодействующей силы проходит через точки А и В.
Из последнего условия (52) после применения теоремы Вариньона получаем
.
Но
,
так как точка С не находится на прямой,
проходящей через точки А и В. Следовательно,
равнодействующая сила равна нулю, что
и является достаточным условием
равновесия плоской системы сил,
приложенных к твердому телу.