- •Сборник профессионально-ориентированных задач по теоретической механике с решениями
- •151001 «Технология машиностроения»,
- •151002 «Металлообрабатывающие станки и комплексы»,
- •150201 «Машины и технология обработки металлов
- •Часть 1. Статика, кинематика
- •Равновесие системы тел
- •Равновесие с учетом трения
- •Условие равновесия клина
- •Из схемы сила трения
- •Так как из схемы
- •Для клина с трением только на наклонной поверхности
- •Выше найдено, что
- •С учетом этих соотношений из (8) получим
- •Из (I) и (2) получим
- •Коэффициент устойчивости
- •Кинематика механизмов
- •Вопросы для самоконтроля
- •Библиографический список
- •Содержание
- •3 94026 Воронеж, Московский просп., 14
Равновесие с учетом трения
Задача 6. В пневматических токарных кулачковых патронах применяется самотормозящий клиновой центрирующий механизм [9]. Для заданного угла скоса клина (рис. 6) и коэффициента трения скольжения f , одинакового на обеих поверхностях клина, установить условия самоторможения и оценить величину запаса самоторможения.
Рис. 6
РЕШЕНИЕ. Рассмотрим находящийся в равновесии односкосый клин с трением на двух поверхностях (рис.6, а). При любом угле скоса зажатый клин стремится вытолкнуть сила обратного действия , представляющая собой горизонтальную составляющую нормальной реакции – ее вертикальная составляющая. Силе противодействует сила трения на основании клина и горизонтальная составляющая силы трения на наклонной поверхности клина.
Условие равновесия клина
(1)
Из схемы сила трения
(2)
где – угол скоса клина; – угол трения. Горизонтальная составляющая силы трения .
Вертикальная составляющая силы трения , равная , суммируется с вертикальной составляющей нормальной силы Соответственно величина нормальной реакции на основании клина
(3)
а сила трения на основании клина
В предельном случае перехода самотормозящего клина в несамотормозящий из (1) имеем
,
При малых углах произведение близко к нулю, а величина тангенсов углов близка к величине соответствующих углов в радианах.
Тогда условие предельного равновесия клина выразится равенством.
(4)
Полагая углы трения (то есть коэффициенты трения) на обеих поверхностях клина одинаковыми: , получаем
(4′)
Для клина с трением только на наклонной поверхности ( ) условие равновесия будет
Условия (4) и (4') являются условиями самоторможения клина.
Выталкивающая сила (рис. 6, б), необходимая для расклинивания самотормозящего клина, определяется следующим образом.
Заменим силы и равнодействующей и разложим ее на силы и . На основании клина действуют нормальная сила реакции и сила трения . Из условия равновесия клина находим:
Так как из схемы
(5)
то ,
или при
. (6)
Для клина с трением только на наклонной поверхности
.
Сила в формулах (6) и (7) подсчитывается по формуле (3). Для упрощения расчетов можно принимать .
Запас самоторможения k вводится как отношение сил, удерживающих клин в заторможенном состоянии, к силе обратного действия:
. (8)
Величина k должна быть такова, чтобы полностью исключить возможность потери самоторможения механизмом, работающим в условиях вибрации или нагрузок переменного знака.
Выше найдено, что
С учетом этих соотношений из (8) получим
или при
Для предельного случая перехода самотормозящего клина в не-самотормозящий из (4′) и соответственно .
При
У клина с трением только на наклонной поверхности запас самоторможения в два раза меньше, то есть
(9)
Для предельного случая .
Примечание. В самоторомозящих механизмах, подвергавшихся сотрясениям и не имеющих предохранительных устройств от саморасклинивания или постоянного поджима пневмогидроприводом, рекомендуется брать
Задача 7. В щековой дробилке размалываемый камень попадает между подвижной 1 и неподвижной 2 щеками. Расчетное усилие размалывания N в 150―200 раз больше силы тяжести камня G. Принимая коэффициенты трения на обеих щеках одинаковыми и равными f, показать, что условием работоспособности камнедробилки является 2 f > (1– f 2)tg (рис. 7, а и рис. 7, б).
Рис. 7
РЕШЕНИЕ. Рассмотрим равновесие камня под действием плоской системы трех сходящихся сил: (рис. 7, б).
Составим два уравнения равновесия:
(1)
(2)
где