
- •Введение
- •1. Основы металловедения
- •1.1. Кристаллические решетки металлов
- •1.2. Реальное строение металлических кристаллов
- •1.3. Анизотропия кристаллов
- •1.4. Кристаллизация металлов
- •1.5. Аллотропия (полиморфизм) металлов
- •1.6. Основы теории сплавов
- •1.6.1. Кристаллическое строение сплавов
- •1.6.2. Особенности кристаллизации сплавов
- •1.6.3. Диаграммы состояния двойных сплавов
- •1.6.4. Свойства металлов и сплавов
- •1.7. Железо и его сплавы
- •1.7.1. Фазы в железоуглеродистых сплавах
- •1.7.2. Диаграмма состояния железо — цементит
- •1.7.3. Применение диаграммы Fe—Fe3c
- •1.7.4. Основные виды термической обработки стали
- •1.7.5. Классификация углеродистых сталей
- •1.7.6. Стали обыкновенного качества
- •1.7.7. Углеродистые качественные стали
- •1.7.8. Автоматные стали
- •1.7.9. Углеродистые инструментальные стали
- •1.7.10. Легированные стали
- •1.7.11. Классификация легированных сталей
- •1.7.12. Маркировка легированных сталей
- •1.7.13. Чугуны
- •1.8. Цветные металлы и сплавы
- •2.2. Сплавы с заданным температурным коэффициентом модуля упругости
- •3. Материалы с особыми физическими свойствами
- •3.1. Материалы с особыми магнитными свойствами
- •3.1.1. Общие сведения о ферромагнетиках
- •3.1.2. Магнитно-мягкие материалы
- •3.1.3. Магнитно-твердые материалы
- •4. Полупроводниковые материалы
- •5. Диэлектрики
- •6. Проводниковые материалы
- •6.1. Электропроводность твердых тел
- •6.2. Металлы высокой проводимости
- •6.3. Припои
- •6.4. Сверхпроводники
- •6.5. Сплавы повышенного электросопротивления
- •Рассмотрим характеристики некоторых сплавов повышенного электросопротивления.
- •6.6. Контактные материалы
- •7. Неметаллические материалы
- •7.1. Пластмассы
- •7.1.1. Классификация пластмасс
- •7.1.2. Термопластичные пластмассы
- •7.1.3. Полярные термопласты
- •7.1.4. Термореактивные пластмассы
- •7.1.5. Пластмассы с порошковыми наполнителями
- •7.1.6. Газонаполненные пластмассы
- •7.2. Резины
- •7.3. Клеи
- •7.4. Неорганическое стекло
- •7.5. Ситаллы (стеклокристаллические материалы)
- •7.6. Керамические материалы
- •394026 Воронеж, Московский просп., 14
5. Диэлектрики
Диэлектриками называют вещества, у которых валентная зона отделена от зоны проводимости широкой зоной запрещенных энергий. Важнейшими твердыми диэлектриками являются керамика, полимеры и стекло. В них преобладает ионный или ковалентный тип связи, нет свободных носителей зарядов. Их удельное электрическое сопротивление равно 1012…1020 Ом∙м. Электрические свойства диэлектрика определяют область его применения; при этом принимаются во внимание механические свойства материала, его химическая стойкость и другие параметры.
Характерной особенностью диэлектрика является способность поляризоваться в электрическом поле. Сущность поляризации заключается в смещении связанных электрических зарядов под действием поля. Смещенные заряды создают собственное внутреннее электрическое поле, которое направлено противоположно внешнему. Мерой поляризации является диэлектрическая проницаемость ε. Она оценивается отношением емкостей Сд/С0 конденсатора. Емкость Сд определяется, когда между пластинами конденсатора находится диэлектрик, а емкость С0 - когда вместо диэлектрика вакуум. В твердом диэлектрике одновременно проявляется несколько видов поляризации, которые в сумме определяют величину ε и ее зависимость от температуры и частоты поля. Конструкционные диэлектрики общего назначения имеют небольшое значение ε - до 10…12. Диэлектрики, которые используются в конденсаторах, должны иметь высокие значения ε, чтобы увеличить емкость конденсатора. У конденсаторных диэлектриков е меняется от 12…15 до 100000.
Наиболее важными видами поляризации являются электронная, ионная, дипольно-релаксационная и самопроизвольная (спонтанная).
Электронная поляризация вызывается деформацией электронных оболочек атомов. Электроны смещаются почти мгновенно, время установления поляризации ничтожно мало (10-15 с), и поэтому она не зависит от частоты.
Ионная поляризация возникает при упругом смещении ионов на расстояния, не превышающие межионные. Отрицательные ионы смещаются в сторону положительного электрода, а положительные ионы - в сторону отрицательного. Время установления ионной поляризации очень мало (10-13 с), и ε также не зависит от частоты.
Дипольно-релаксационная поляризация проявляется в полярных диэлектриках. Повороты диполей существенно меняют ε. У неполярных диэлектриков ε немного больше 2, у полярных - в несколько раз больше. Повороты диполей при наложении поля и возвращение диполей к неупорядоченному состоянию после снятия поля требуют преодоления некоторого сопротивления молекулярных сил. Эта поляризация появляется и исчезает значительно медленнее электронной или ионной поляризации.
При нагреве диэлектрическая проницаемость ε изменяется, температурный коэффициент ε (ТКε) принимает значения от -1300 до + 3000∙10-6 °С-1. Отрицательный ТКε имеют диэлектрики с электронной поляризацией, при нагреве увеличивается их объем и соответственно уменьшается плотность зарядов. Диэлектрики с ионной поляризацией имеют положительный TKε. При нагреве поляризация увеличивается вплоть до верхней границы рабочего интервала температур. Это объясняется ослаблением притяжения между ионами и увеличением их смещения. Особенно сильно повышается поляризация, когда ионы начинают смещаться на расстояния больше межионных. В этом случае поляризация зависит от частоты, устанавливается медленно - за 10-5…10-3 с и называется ионно-релаксационной.
Самопроизвольная поляризация наблюдается только у одного класса диэлектриков — сегнетоэлектриков. При охлаждении сегнетоэлектрика ниже определенной температуры, которую называют точкой Кюри, самопроизвольно, без внешних воздействий, возникает поляризация. Объем сегнетоэлектрика разбивается на домены, в каждом из которых вещество сильно поляризовано. В отсутствие поля домены расположены беспорядочно, и суммарная поляризация равна нулю. При наложении поля поляризация увеличивается нелинейно благодаря переориентации поляризации доменов. При циклическом изменении поля от +Е до -Е возникает петля гистерезиса. Когда напряженность поля возрастает, поляризация достигает насыщения; при этом ε увеличивается до максимального значения и вновь уменьшается. По аналогии с ферромагнетиками напряженность поля Ес, при которой меняется направление поляризации, называется коэрцитивной силой. Когда Ес<0,1 МВ/м, сегнетоэлектрик является мягким; когда Ес > 1 МВ/м, материал жесткий.
Известно около 500 сегнетоэлектриков. Они принадлежат к классу активных диэлектриков, которые используются для генерации и преобразования электрических сигналов. Между электрическими, механическими, тепловыми и другими свойствами сегнетоэлектриков существуют нелинейные зависимости. Значения свойств вблизи точки Кюри имеют максимумы или минимумы. В частности, максимальное значение ε достигается около точки Кюри.
Электропроводимость твердых диэлектриков связана с появлением в них свободных ионов или электронов. Основное значение имеет ионная проводимость, обусловленная примесями.
Электропроводимость диэлектрика подразделяют на объемную (сквозную) и поверхностную. Каждая из них характеризуется своим удельным электрическим сопротивлением - объемным ρv (Ом ∙ м) и поверхностным ρs (Ом).
Диэлектрики имеют высокое удельное объемное электрическое сопротивление (ρv ≥ 1012 Ом ∙ м). При нагреве оно понижается в результате роста подвижности ионов.
Поверхностное электрическое сопротивление ρs зависит как от состава и структуры диэлектрика, так и состояния его поверхности и влажности среды. Загрязнения и влага на шероховатой или пористой поверхности образуют проводящую пленку, диэлектрик может полностью утратить изоляционные свойства, хотя его объемное электрическое сопротивление при этом останется высоким. Для повышения поверхностного электрического сопротивления поверхность изделий стремятся сохранить чистой и гладкой, используя для этого покрытия - лаки и эмали.
Диэлектрические потери представляют собой часть энергии электрического поля, которая превращается в диэлектрике в теплоту и нагревает его. При частотах свыше 20 кГц величина потерь становится одним из самых важных параметров диэлектрика.
Для определения потерь диэлектрик удобно рассматривать как конденсатор в цепи переменного тока. У идеального конденсатора угол сдвига фаз между током I и напряжением U равен 90°, поэтому активная мощность Р = IUcosφ равна нулю. Диэлектрик не является идеальным конденсатором, и угол сдвига фаз у него меньше 90° на угол δ. Этот угол называют углом диэлектрических потерь. Тангенс угла δ и диэлектрическая постоянная ε характеризуют удельные потери (на единицу объема диэлектрика), Вт/м3:
P = k E2 f ε tg δ,
где k - коэффициент; Е - напряженность электрического поля, В/м; f - частота поля, Гц.
Произведение εtgδ называют коэффициентом диэлектрических потерь. По величине tgδ диэлектрики подразделяют на низкочастотные (tgδ = 0,1…0,001) и высокочастотные (tgδ < 0,001). К основным источникам потерь диэлектрика относятся его поляризация и электропроводимость, ионизация газов в имеющихся порах и неоднородность структуры из-за примесей и включений.
Электрическая прочность характеризуется сопротивлением пробою. Пробой - это необратимое разрушение твердого диэлектрика под действием поля и потеря изолирующих свойств. Электрической прочностью или пробивной напряженностью Епр называется отношение пробивного напряжения Uпр к толщине диэлектрика в месте пробоя. Различают три вида пробоя: электрический, тепловой и электрохимический.
Электрический пробой возникает вследствие ударной ионизации нарастающей лавиной электронов. Пробой наступает почти мгновенно (за 10-7-10-8 с) под действием поля большой напряженности (свыше 1000 МВ/м) независимо от нагрева диэлектрика. Обычно диэлектрик пробивается при включении напряжения или при его резком скачке.
Тепловой пробой наступает при комбинированном воздействии поля и нагрева, причем пробивная напряженность Епр из-за повышения температуры диэлектрика снижается. Чем лучше отвод теплоты в окружающую среду, тем ниже температура диэлектрика и выше Епр. Тепловой пробой ускоряется при повышении частоты (так как при этом возрастают потери) и замедлении теплоотвода.
Электрохимический пробой наступает при длительном действии поля, сопровождающемся необратимыми изменениями в структуре диэлектрика и понижением его электрической прочности.
По химическому составу диэлектрики разделяют на органические и неорганические. К органическим относятся полимеры, резина, шелк; к неорганическим - слюда, керамика, стекло, ситаллы.
По электрическим свойствам диэлектрики подразделяют на низкочастотные (электротехнические) и высокочастотные (радиотехнические).
Для электроизоляционных материалов решающее значение имеет их нагревостойкость, т. е. способность без ущерба для свойств выдерживать нагрев в течение длительного времени. По нагревостойкости диэлектрики разделяют на семь классов (ГОСТ 8865-70), обозначенных Y, А, Е, В, F, Н, С. В классе Y объединены наименее стойкие целлюлозные, шелковые и полимерные материалы, для них рабочая температура не превышает 90 °С. Самыми нагревостойкими являются материалы класса С - слюда, керамика, стекло, ситаллы, а также полиимиды и фторопласт-4. Они выдерживают длительный нагрев 180 °С и выше.
Большое влияние на свойства диэлектриков оказывают гигроскопичность и влагопроницаемость. Образование токопроводящих пленок на поверхности и в толще изделий понижает изолирующую способность и может закончиться пробоем.
Наиболее гигроскопичны материалы с порами и капиллярами на поверхности - бумага, обычная пористая керамика, слоистые пластики. Для изделий из гигроскопичных диэлектриков используют пропитку, защищают поверхности лаками, глазурью и т. п.
Прочность диэлектриков и особенности их механических свойств являются дополнительным критерием выбора материалов. Керамика, стекло и ситаллы — наиболее прочные диэлектрики. Характерной особенностью этих материалов является хрупкость; их прочность на сжатие в несколько раз больше прочности на изгиб. Предел прочности на изгиб равен 30…300 МПа, увеличиваясь до 500 МПа у ряда ситаллов.
Стабильность структуры и свойств диэлектриков определяет сроки их эксплуатации. Наибольшую стабильность имеют керамика и ситаллы, в стеклах под влиянием поля мигрируют ионы щелочных металлов и образуются электропроводящие мостики. Добавки РbО и ВаО увеличивают стойкость стекла против электрохимического пробоя, связанного с миграцией ионов щелочных металлов. Органические диэлектрики разрушаются при комбинированном действии нагрева, окисления на воздухе и ионизации, поэтому их срок службы меньше, чем у керамики или стекла. Большинство пластмасс под действием разрядов обугливается и теряет изолирующую способность. Этого недостатка лишены полистирол, органическое стекло, фторопласты и кремнийорганические пластики. Среди диэлектриков самыми важными являются керамические материалы и особенно сегнетокера-мика. Керамика имеет наиболее разнообразные электрические свойства, почти не подвержена старению и устойчива к нагреву.
Установочная керамика применяется для изготовления изоляторов, колодок, плат, каркасов, катушек и т. п. Она должна иметь низкие потери, хорошие электроизоляционные свойства и прочность.
Для работы при низких частотах используют электрофарфор, который дешев и имеет неплохие электрические свойства. Его недостатки - большие потери, резко возрастающие при нагреве выше 200 °С, и низкая механическая прочность. Недостатки электрофарфора объясняются свойствами стекла, которого в нем содержится довольно много.
Основным материалом, используемым для изготовления деталей, предназначенных для работы при высоких частотах, является стеатит, который получают из талька. Стеатиты не содержат вредных примесей, их свойства стабильны до 100 °С. Они легко прессуются, при обжиге дают усадку всего 1…2% и используются для деталей с плотной и пористой структурой и точными размерами. В отличие от других видов керамики стеатит удовлетворительно режется (после предварительного обжига). Недостатки стеатита - растрескивание при быстрых сменах температуры и трудность обжига.
Конденсаторная керамика должна иметь большую ε, обеспечивающую повышенную удельную емкость, низкие потери и малый ТК ε. Применение такой керамики увеличивает надежность работы и теплостойкость конденсаторов, уменьшает их размеры.
Для высокочастотных конденсаторов применяют ультрафарфор, стеатит, станнатную керамику, но лучшие свойства имеет керамика на основе TiO2. Эту керамику подразделяют на две группы: тиконды (Т-60, Т-80, Т-150) и термоконды (Т-20, Т-40), цифра в них указывает значение ε. В тикондах основным видом кристаллов является рутил - наиболее плотная модификация TiO2. Чем больше содержание TiO2 в керамике, тем выше значения ε и ТКε. Основная область применения тикондов - термокомпенсирующие конденсаторы. Термоконды наряду с TiO2 содержат ZrO2 и другие добавки. Они имеют низкие значения ТКε и используются для конденсаторов высокой стабильности.
Лучшая конденсаторная керамика, применяемая при низких частотах, - сег-нетокерамика. Недостатками сегнетокерамики являются сравнительно большие потери и невысокая электрическая прочность.
Пьезоэлектрики - вещества, у которых под действием механических напряжений возникает поляризация (прямой пьезоэффект) и под действием электрического поля изменяются размеры (обратный пьезоэффект). К пьезоэлектрикам относятся поляризованные сегнетоэлектрики с остаточной поляризацией, а также кристаллы, не имеющие центра симметрии. Структура пьезокерамики - твердые растворы на основе титаната бария (ТБС и ТБКС), ниобата бария (НБС), ниобата и титаната свинца (НТС).