Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 70079.doc
Скачиваний:
11
Добавлен:
01.05.2022
Размер:
452.68 Кб
Скачать

Задачи по теме №1

  1. Автомобиль проходит последовательно два одинаковых участка пути, каждый по 10 м с постоянным ускорением, причем первый участок пути пройден автомобилем за 1 с, а второй – за 2 с. С каким ускорением движется автомобиль и какова его скорость в начале первого участка?

  2. При аварийном торможении автомобиль, движущийся со скоростью 72 км/ч, остановился через 5 с. Найти тормозной путь.

  3. Зависимость скорости материальной точки от времени имеет вид: .Материальная точка движется прямолинейно. Каков путь, пройденный точкой за 4 с?

  4. Определить путь, проходимый частицей, которая движется по прямолинейной траектории в течение 10 с, если ее скорость изменяется по закону v = 30 + 2t. В момент времени t0 =0, S=0.

  5. Рядом с поездом на одной линии с передними буферами паровоза стоит человек. В тот момент, когда поезд начал двигаться с ускорением 0,1 м/с2, человек начал идти в том же направлении со скоростью 1,5 м/с. Через какое время поезд догонит человека? Определить скорость поезда в этот момент и путь, пройденный за это время человеком.

  6. Из одного и того же места начали равноускоренно двигаться в одном направлении две точки, причем вторая начала свое движение через две секунды после первой. Первая точка двигалась с начальной скоростью 1 м/с и ускорением 2 м/с2, вторая – с начальной скоростью 10 м/с и ускорением 1 м/с2. Через сколько времени и на каком расстоянии от исходного положения вторая точка догонит первую?

  7. Пожарный поезд прошел расстояние 17 км между двумя станциями со средней скоростью 60 км/ч. При этом на разгон в начале движения и торможения перед остановкой ушло в общей сложность 4 мин, а остальное время поезд двигался с постоянной скоростью. Чему равна эта скорость?

  8. Время отправления электрички по расписанию 12.00. На ваших часах 12.00, но мимо вас уже начинает проезжать предпоследний вагон, который движется мимо вас в течение 10 с. Последний вагон проходит мимо вас в течение 8 с. Электричка отправилась вовремя и движется равноускоренно. На какое время отстают ваши часы?

  9. Лыжник съехал с горы длиной 40 м за 10 с, после чего он проехал по горизонтальной площадке до остановки 20 м. Считая движение с горы равноускоренным без начальной скорости, а по горизонтальной площадке равнозамедленным, найти скорость лыжника в конце горы и среднюю скорость на всем пути.

  10. При равноускоренном движении мотоциклист за первые 5 с прошел путь в 45 м, а в следующие 5 с – путь в 95 м. Найти начальную и среднюю скорости мотоциклиста.

  11. Велосипедист начал свое движение из состояния покоя и в течение первых 4 с двигался с ускорением 1 м/с2, затем в течение 0,1 мин он двигался равномерно и последние 20 м – равнозамедленно до остановки. Найти среднюю скорость за все время движения.

  12. С вертолета, находящегося на высоте 1960 м, сброшен гуманитарный груз. Через какое время груз достигнет земли, если вертолет: 1) неподвижен; 2) поднимается со скоростью 19,6 м/с; 3) опускается со скоростью 19,6 м/с.

  13. Вертикально вверх с начальной скоростью 20 м/с брошен камень. Через 1 с после этого брошен вертикально вверх другой камень с такой же скоростью. На какой высоте встретятся камни?

  14. С балкона бросили мячик вертикально вверх с начальной скоростью 5 м/с. Через 2 с мячик упал на землю. Определить высоту балкона над землей и скорость мячика в момент удара о землю.

  15. Автомобиль спасательной службы движется по шоссе со скоростью 120 км/ч, а при буксировке аварийного автомобиля – со скоростью всего 30 км/ч. Чему равна его средняя скорость, если он едет половину пути один, а затем буксирует неисправный автомобиль?

  16. Камень, брошенный со скоростью 12м/с под углом 450 к горизонту, упал на землю на некотором расстоянии от места бросания. С какой высоты надо бросить камень в горизонтальном направлении, чтобы при той же начальной скорости он упал на то же место?

  17. Снаряд вылетает из ствола орудия, установленного на высоте 122,5 м, со скоростью 400 м/с в горизонтальном направлении. Определить время полета снаряда. Поразит ли снаряд одну из целей, расположенных на расстоянии 2 км и 5,8 км от орудия (по горизонтали) в направлении полета снаряда? Сопротивлением воздуха пренебречь.

  18. Камень брошен с вышки со скоростью 29.4м/с в горизонтальном направлении. Найти радиус кривизны траектории камня в точке, где он будет через 4с после начала движения.

  19. Камень брошен горизонтально. Через 3с его скорость оказалась направленной под углом 450 к горизонту. Определить начальную скорость камня.

  20. Под углом 600 к горизонту брошено тело с начальной скоростью 20 м/с. Через какой промежуток времени оно будет двигаться под углом 450 к горизонту.

  21. Дальность полета тела, брошенного горизонтально со скоростью 4,9 м/с, равна высоте бросания. Под каким углом к горизонту направлена скорость тела в момент его падения на землю?

  22. Мяч брошен со скоростью υ0 под углом α к горизонту. Найти υ0 и α, если максимальная высота подъема мяча 3м, а радиус кривизны траектории мяча в этой точке 3м.

  23. Под каким углом к горизонту надо бросить тело, чтобы высота подъема была в два раза больше дальности полета?

  24. Камень брошен с вышки в горизонтальном направлении с начальной скоростью 30 м/с. Определить скорость, тангенциальное и нормальное ускорения камня в конце второй секунды после начала движения.

  25. Камень брошен с вышки в горизонтальном направлении. Через промежуток времени 2 с камень упал на землю на расстоянии 40 м от основания вышки. Определить начальную и конечную скорости камня.

  26. Камень, брошенный горизонтально на высоте 6 м, упал на землю на расстоянии 10 м от точки бросания. Найдите начальную скорость камня, нормальное и тангенциальное ускорение камня через время 0,2 с после начала движения.

  27. Через какое время вектор скорости тела, брошенного под углом 60 к горизонту с начальной скоростью 20 м/с, будет составлять с горизонтом угол 30? Сопротивление воздуха не учитывать.

  28. Артиллерийское орудие установлено на горе высотой 75,5 м. Снаряд вылетает из ствола со скоростью 500 м/с под углом 30 к горизонту. Определить дальность полета снаряда и скорость полета в момент падения. Сопротивление воздуха не учитывать.

  29. С башни высотой 30 м в горизонтальном направлении брошено тело с начальной скоростью 10 м/с. Определить скорость тела в момент падения на землю и угол, который образует эта скорость с горизонтом в точке его падения.

  30. Миномет, установленный на крыше здания высотой 60 м, стреляет под углом 30 к горизонту и поражает цель, удаленную на расстояние 7500 м (по горизонтали). Определить начальную скорость мины и продолжительность ее полета. Сопротивление воздуха не учитывать.

  31. Точка движется по окружности радиуса 20 см с постоянным тангенциальным ускорением 5 м/с2. Через какое время после начала движения нормальное ускорение точки будет равно тангенциальному?

  32. Зависимость пройденного телом пути по окружности радиусом 3 м задается уравнением S = At2 + Bt (A = 0,4 м/с2, В = 0,1 м/с). Определить нормальное, тангенциальное и полное ускорение тела через 1 c после начала движения.

  33. Трамвай, начав двигаться равноускоренно по закругленному участку пути и пройдя 100 м, развил скорость 36 км/ч. Каковы тангенциальное и нормальное ускорения трамвая в конце десятой секунды после начала движения?

  34. Поезд движется равнозамедленно по закруглению радиуса R и, пройдя путь S, приобретает скорость vk. Его начальная скорость vH. Найти время движения и полное ускорение в начале и в конце пути.

  35. По дуге окружности радиусом 10 м движется точка. В некоторый момент времени нормальное ускорение точки 4,9 м/с2; в этот момент векторы полного и нормального ускорений образуют угол 60. Найти скорость и тангенциальное ускорение точки.

  36. С какой угловой скоростью вращается колесо, если линейная скорость точек его обода равна 0,5 м/с, а линейная скорость точек, находящихся на 4 см ближе к оси вращения, равна 0,3 м/с?

  37. Ось с двумя дисками, расположенными на расстоянии 0,5 м друг от друга вращается с частотой 1600 об/мин. Пуля, летящая вдоль оси, пробивает оба диска; при этом отверстие от пули во втором диске смещено относительно отверстия в первом диске на угол 120. Найти скорость пули.

  38. Маховик начал вращаться равноускоренно и за промежуток времени 10 с достиг частоты вращения 300 об/мин. Определить угловое ускорение маховика и число оборотов, которое он сделал за это время.

  39. Диск вращается с угловым ускорением 2 рад/с2. Сколько оборотов сделает диск при изменении частоты вращения от 240 об/мин до 90 об/мин? Найти время, в течении которого это произойдет.

  40. Материальная точка начинает двигаться по окружности радиусом 12,5 см с постоянным тангенциальным ускорением 0,5 см/с2. Определить момент времени, при котором вектор ускорения образует с вектором скорости угол 45

  41. Найти радиус вращающегося колеса, если известно, что линейная скорость точки, лежащей на ободе, в 2,5 раза больше линейной скорости точки, лежащей на расстоянии 5 см ближе к оси колеса.

  42. Ось с двумя дисками, расположенными на расстоянии 0,5 м друг от друга вращается с частотой 1600 об/мин. Пуля, летящая вдоль оси, пробивает оба диска; при этом отверстие от пули во втором диске смещено относительно отверстия в первом диске на угол 12. Найти скорость пули.

  43. Колесо начинает вращаться из состояния покоя и через 1,5 с достигает угловой скорости 20 рад/с. На какой угол оно повернулось за указанное время?

  44. Колесо вращается с постоянным угловым ускорением 3 рад/с2. Определить радиус колеса, если через 1 с после начала движения полное ускорение колеса 7,5 м/с2.

  45. Колесо, вращаясь равноускоренно, достигло угловой скорости 20 рад/с через 10 оборотов после начала вращения. Найти угловое ускорение колеса.

  46. В шахту равноускоренно опускается бадья массой 280 кг. В первые 10 с она проходит 35 м. Найти силу натяжения каната, на котором висит бадья.

  47. Вагон массой 20 т движется с начальной скоростью 54 км/ч. Определить среднюю силу, действующую на вагон, если известно, что вагон останавливается в течении 1 мин 40 с.

  48. Автомобиль массой 1020 кг останавливается при торможении за 5 с, пройдя при этом равнозамедленно расстояние 25 м. Найти начальную скорость автомобиля и силу торможения.

  49. На автомобиль массой 1 т во время движения действует сила трения, равная 0,1 его силы тяжести. Найти силу тяги, развиваемую мотором автомобиля, если автомобиль движется с постоянной скоростью в гору с уклоном 1 м на каждые 25 м пути.

  50. По наклонной плоскости высотой 0,5 м и длиной склона 1 м скользит тело массой 3 кг. Тело приходит к основанию наклонной плоскости со скоростью 2,45 м/с. Найти коэффициент трения тела о плоскость/ Начальная скорость равна нулю.

  51. Наклонная плоскость, образующая угол 250 с плоскостью горизонта, имеет длину 2 м. Тело, двигаясь равноускоренно, соскользнуло с этой плоскости за время 2 с. Определить коэффициент трения тела о плоскость.

  52. Камень, пущенный по поверхности льда со скоростью 3 м/с, прошел до остановки расстояние 20,4 м. Найти коэффициент трения камня о лед.

  53. Тело скользит по наклонной плоскости, образующей с горизонтом угол 450. Пройдя путь 36,4 см тело приобретает скорость 2 м/с. Найти коэффициент трения тела о плоскость.

  54. Тело скользит с наклонной плоскости высотой h и углом наклона к горизонту и движется далее по горизонтальному участку. Принимая коэффициент трения на всем пути постоянным и равным μ, определить расстояние S, пройденное телом на горизонтальном участке, до полной остановки.

  55. Стальная проволока выдерживает груз до 5000 Н. С каким наибольшем ускорением можно поднимать груз в 4500 Н, подвешенный на этой проволоке, чтобы она не разорвалась?

  56. К нити подвешен груз массой 500 г. Определить силу натяжения нити, если нить с грузом: 1)поднимается с ускорением 2 м/c2; 2) опускается с ускорением 2 м/с2.

  57. При разборе завала используется подъемный кран. Трос крана выдерживает силу натяжения 4000 Н. С каким наибольшим ускорением можно поднимать обломок стены массой 400 кг, чтобы трос при этом не разорвался?

  58. Масса лифта с пассажирами равна 800 кг. Найти, с каким ускорением и в каком направлении движется лифт, если известно, что натяжение троса поддерживающего лифт, равно 11760 Н.

  59. С каким ускорением нужно поднимать гирю, чтобы ее вес увеличился вдвое? С каким ускорением нужно ее опускать, чтобы вес уменьшился вдвое?

  60. На столе стоит тележка массой 4 кг. К тележке привязан один конец шнура, перекинутого через блок. С каким ускорением будет двигаться тележка, если к другому концу шнура привязать гирю массой 1 кг?

  61. Молекула массой 4,651026 кг, летящая нормально к стенке сосуда со скоростью 600 м/с, ударяется о стенку и упруго отталкивается от нее без потери скорости. Найти импульс силы, полученный стенкой за время удара.

  62. Молекула массой 4,651026 кг, летящая со скоростью 600 м/с, ударяется о стенку сосуда под углом 600 к нормали и под таким же углом упруго отталкивается от нее без потери скорости. Найти импульс силы, полученный стенкой за время удара.

  63. Мяч массы 150 г ударяется о гладкую стенку под углом 300 к ней и отскакивает без потери скорости. Найти среднюю силу, действующую на мяч со стороны стенки, если скорость мяча 10 м/с, а продолжительность удара 0,1 с.

  64. Два шара массами 9 кг и 12 кг подвешены на нитях длиной 1,5 м. Первоначально шары соприкасаются между собой, затем меньший шар отклонили на угол 0 и отпустили. Считая удар неупругим, определить высоту на которую поднимутся оба шара после удара.

  65. Тело массой 2 кг движется навстречу второму телу массой 1,5 кг и абсолютно неупруго соударяется с ним. Скорости тел непосредственно перед ударом были 1 м/с и 2 м/с. Какое время будут двигаться эти тела после удара, если коэффициент трения 0,05?

  66. Шар массой 2 кг, движущийся горизонтально со скоростью 4 м/с, столкнулся с неподвижным шаром массой 3 кг. Считая удар центральным и абсолютно неупругим, найти количество теплоты, выделившееся при ударе.

  67. Лодка массой 150 кг и длиной 2,8 м стоит неподвижно в стоячей воде. Рыбак массой 90 кг в лодке переходит с носа на корму. Пренебрегая сопротивлением воды, определить, на какое расстояние s при этом сдвинется лодка.

  68. Тело массой 2 кг движется со скоростью 3 м/с и нагоняет второе тело массой 3 кг, движущееся со скоростью 1 м/с. Каково должно быть соотношение между массами тел, чтобы при упругом ударе первое тело после удара остановилось?

  69. Снаряд массой 20 кг, летевший со скоростью, направленной под углом 300 к горизонту, попадает в платформу с песком массой 104 кг и застревает в песке. С какой скоростью летел снаряд, если платформа начинает двигаться со скоростью 1 м/с?

  70. Камень массой 400 г бросили со скоростью 20 м/с в горизонтальном направлении с башни, высота которой 50 м. Найти потенциальную и кинетическую энергии камня через 2 с после начала его движения.

  71. Автомобиль массой 2 т затормозил и остановился, пройдя путь 50 м. найти работу силы трения, если дорога горизонтальна и коэффициент трения равен 0,4.

  72. Гиря, положенная на верхний конец спиральной пружины, сжимает ее на 2 мм. На сколько сожмет пружину та же гиря, упавшая на конец пружины с высоты 5 см?

  73. Молот массой 70 кг падает с высоты 5 м и ударяет по железному изделию, лежащему на наковальне. Масса наковальни вместе с изделием 1330 кг. Считая удар абсолютно неупругим, определить энергию, расходуемую на деформацию изделия.

  74. Автомобиль массой 2 т движется в гору. Уклон горы равен 4 м на каждые 100 м пути. Коэффициент трения равен 8%. Найти работу, совершенную двигателем автомобиля на пути 3 км.

  75. Найти, какую мощность развивает двигатель автомобиля массой 1 т, если известно, что автомобиль едет с постоянной скоростью 36 км/ч по горизонтальной дороге.

  76. Определить момент силы, который необходимо приложить к однородному диску, вращающемуся с частотой 12 с-1, чтобы он остановился через 8 с. Диаметр диска 30 см, масса диска 6 кг.

  77. К ободу колеса радиусом 0,5 м и массой 50 кг приложена касательная сила 98,1 Н. Найти угловое ускорение колеса. Через какое время после начала действия силы колесо будет иметь частоту вращения 100 об/с? Колесо считать однородным диском. Трением пренебречь.

  78. Маховик, момент инерции которого 63,6 кг⋅м2, вращается с угловой скоростью 31,4 рад/с. Найти момент сил торможения, под действием которого маховик остановится через 20 с. Маховик считать однородным диском.

  79. На цилиндр, который может вращаться около горизонтальной оси, намотана нить. К концу нити привязали грузик и предоставили ему возможность опускаться. Двигаясь равноускоренно, грузик за время 3 c опустился на 1,5 м. Определите угловое ускорение цилиндра, если его радиус 4 см.

  80. На однородный сплошной цилиндрический вал радиусом 50 см намотана легкая нить, к концу которой прикреплен груз массой 6,4 кг. Груз, опускается с ускорением 2 м/с2. Определить момент инерции вала и массу вала.

  81. На однородный сплошной цилиндрический вал радиусом 5 см и массой 10 кг намотана легкая нить, к концу которой прикреплен груз 1 кг. Определить силу натяжения нити.

  82. На барабан радиусом 0,5 м намотан шнур, к концу которого привязан груз 10 кг. Найти момент инерции барабана, если известно, что груз опускается с ускорением 2,04 м/с2.

  83. К ободу однородного сплошного диска массой 10 кг, насаженного на ось, приложена постоянная касательная сила 30 Н. Определить кинетическую энергию диска через время 4 с после начала действия силы.

  84. Маховик вращается с постоянной скоростью, соответствующей частоте 10 об/с; его кинетическая энергия 7,85 кДж. За сколько времени вращающий момент 50 Н·м, приложенный к этому маховику, увеличит угловую скорость в два раза?

  85. Определить тормозящий момент, которым можно остановить за 20 с маховое колесо массой 50 кг и радиусом 0,30 м, вращающееся с частотой 20 об/с. Массу маховика считать распределённой по ободу. Чему равна работа, совершаемая тормозящим моментом?

  86. По горизонтальной плоской поверхности катится диск со скоростью 8 м/с. Определить коэффициент сопротивления, если диск, будучи предоставленным самому себе, остановился, пройдя путь в 18 м.

  87. Сплошной цилиндр массой 10 кг катится без скольжения с постоянной скоростью 10 м/с. Определить кинетическую энергию цилиндра и время до его остановки, если на него действует сила трения 50 Н.

  88. Сплошной шар скатывается без проскальзывания по наклонной плоскости, длина которой 10 м и угол наклона 300. Определить скорость шара в конце наклонной плоскости. Трение шара о плоскость не учитывать.

  89. Полый тонкостенный цилиндр массой 2 кг катится по горизонтальной поверхности со скоростью 20 м/с. Определить силу, которую необходимо приложить к цилиндру, чтобы остановить его на пути 1,6 м.

  90. Какой путь пройдет катящийся без скольжения диск, поднимаясь вверх по наклонной плоскости с углом наклона 300, если ему сообщена начальная скорость 7,0 м/с, параллельная наклонной плоскости.

КОНТРОЛЬНАЯ РАБОТА №2

ТЕМА №2. МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА.

ЭЛЕКТРОСТАТИКА И ПОСТОЯННЫЙ ТОК.

Законы и формулы к выполнению задач по теме №2

Основы молекулярно-кинетической теории

  1. Основное уравнение молекулярно-кинетической теории:

, (2.1)

где n – концентрация молекул газа, – средняя кинетическая энергия молекул.

  1. Средняя кинетическая энергия молекул:

, (2.2)

где k – постоянная Больцмана, i – число степеней свободы, Т – температура.

  1. Количество вещества:

, (2.3)

где N – число частиц в газе, NA – число Авогадро, m – масса газа, μ – молярная масса газа.

  1. Плотность газа, занимающего объем V:

. (2.4)

  1. Уравнение Менделеева-Клапейрона:

, (2.5)

где P – давление, V – объем газа, μ – молярная масса газа, R – универсальная газовая постоянная, Т – температура газа.

Термодинамика

  1. Связь между молярной С и удельной с теплоемкостями:

. (2.6)

  1. Молярная теплоемкость при постоянном объеме:

. (2.7)

  1. Уравнение Майера:

, (2.8)

где CP – молярная теплоемкость при постоянном давлении

  1. Первое начало термодинамики:

, (2.9)

где Q – количество теплоты, сообщенное системе (газу); ΔU – изменение внутренней энергии газа; А – работа, совершенная газом против внешних сил.

  1. Изменение внутренней энергии газа:

. (2.10)

  1. Работа, совершаемая при изменении объема газа:

. (2.11)

  1. Уравнения адиабатического процесса:

; т.е. ; (2.12)

; т.е. . (2.13)

γ – коэффициент Пуассона .

  1. Коэффициент полезного действия любого термодинамического цикла:

, (2.14)

где А – работа цикла, Q1 – количество теплоты, полученного рабочим телом от нагревателя, или

, (2.15)

где Q2 – теплота, переданная рабочим телом охладителю.

  1. Коэффициент полезного действия идеального цикла Карно:

, (2.16)

где Т1 и Т2 – температуры нагревателя и охладителя.

  1. Изменение энтропии:

, (2.17)

где А и В – пределы интегрирования, соответствующие начальному и конечному состояниям системы.

Электростатика

  1. Закон Кулона:

, (2.18)

где F – сила взаимодействия точечных зарядов Q1 и Q2; r – расстояние между зарядами; e – диэлектрическая проницаемость среды; ε0 – электрическая постоянная.

  1. Напряженность электрического поля:

. (2.19)

  1. Потенциал электрического поля:

, (2.20)

где П – потенциальная энергия точечного положительного заряда Q, находящегося в данной точке поля (при условии, что потенциальная энергия заряда, удаленного в бесконечность, равна нулю).

  1. Напряженность и потенциал поля, создаваемого системой точечных зарядов (принцип суперпозиции электрических полей):

, (2.21)

где , φi – напряженность и потенциал в данной точке поля, создаваемого i-м зарядом.

  1. Напряженность и потенциал поля, создаваемого точечным зарядом:

, (2.22)

где r – расстояние от заряда Q до точки, в которой определяются напряженность и потенциал.

  1. Напряженность и потенциал поля, создаваемого проводящей заряженной сферой радиуса R на расстоянии r от центра сферы (заряд сферы Q):

  • если r<R, то E=0; ; (2.23)

  • если r=R, то ; ; (2.24)

  • если r>R, то ; . (2.25)

  1. Линейная плотность заряда (заряд, приходящийся на единицу длины заряженного тела):

. (2.26)

  1. Поверхностная плотность заряда (заряд, приходящийся на единицу площади поверхности заряженного тела):

. (2.27)

  1. Напряженность и потенциал поля, создаваемого распределенными зарядами. Если заряд равномерно распределен вдоль линии с линейной плотностью τ, то на линии выделяется малый участок длины dl с зарядом dQdl. Такой заряд можно рассматривать как точечный. Напряженность dE и потенциал электрического поля, создаваемого зарядом dQ, определяется формулами:

, (2.28)

где r – радиус-вектор, направленный от выделенного элемента dl к точке, в которой вычисляется напряженность.

Используя принцип суперпозиции электрических полей, находим интегрированием напряженность и потенциал φ поля, создаваемого распределенным зарядом:

. (2.29)

Интегрирование ведется вдоль всей длины l заряженной линии.

  1. Напряженность поля, создаваемого бесконечной прямой равномерно заряженной линией или бесконечно длинным цилиндром:

, (2.30)

где r – расстояние от нити или оси цилиндра до точки, напряженность поля в которой вычисляется.

  1. Напряженность поля, создаваемого бесконечной равномерно заряженной плоскостью:

. (2.31)

  1. Связь потенциала с напряженностью:

a) в случае однородного поля

; (2.32)

b) в случае поля, обладающего центральной или осевой симметрией:

. (2.33)

  1. Работа сил поля по перемещению заряда Q из точки поля с потенциалом φ1в точку с потенциалом φ2:

. (2.34)

  1. Электроемкость:

или , (2.35)

где φ – потенциал проводника (при условии, что в бесконечности потенциал проводника принимается равным нулю); U – разность потенциалов пластин конденсатора.

  1. Электроемкость плоского конденсатора:

(2.36)

где S – площадь пластины (одной) конденсатора; d – расстояние между пластинами.

  1. Электроемкость батареи конденсаторов:

  • а) при последовательном соединении: ; (2.37)

  • б) при параллельном соединение: , (2.38)

где N – число конденсаторов в батарее.

  1. Энергия заряженного конденсатора:

. (2.39)

Постоянный ток

  1. Сила тока:

, (2.40)

где Q – заряд, прошедший через поперечное сечение проводника за время t.

  1. Закон Ома:

а) для участка цепи, не содержащего ЭДС, , (2.41)

где φ1φ2=U – разность потенциалов (напряжение) на концах участка цепи;

R – сопротивление участка;

б) для участка цепи, содержащего ЭДС, , (2.42)

где ε – ЭДС источника тока; R – полное сопротивление участка (сумма внешних и внутренних сопротивлений);

в) для замкнутой (полной) цепи , (2.43)

где r – внутреннее сопротивление цепи; R – внешнее сопротивление цепи.

  1. Сопротивление R и проводимость G проводника:

(2.44)

где ρ – удельное сопротивление; σ – удельная проводимость; l – длина проводника; S – площадь поперечного сечения проводника.

  1. Сопротивление системы проводников:

  • при последовательном соединении ; (2.45)

  • при параллельном соединении , (2.46)

где Ri – сопротивление i-го проводника.

  1. Работа тока:

(2.47)

Первая формула справедлива для любого участка цепи, на концах которого поддерживается напряжение U, последние две – для участка, не содержащего ЭДС.

  1. Мощность тока:

. (2.48)

  1. Закон Джоуля- Ленца:

(2.49)