Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 2188.pdf
Скачиваний:
3
Добавлен:
30.04.2022
Размер:
11.37 Mб
Скачать

Linear Integer Order System Control by Fractional PI-State Feedback

87

 

 

Figures (10) and (11) show the experimental results obtained with disturbance. Figure

(10) shows the influence of the variation of

of the cart mass. Figure (11) shows the

results obtained when the pendulum is subjected

to disturbance

applied at

and

. Figures (10) and (11) show, in this case also, the robustness of the stabilization by

the fractional PI-state feedback. Indeed, despite the variation of

of the cart mass and

despite external disturbances on the pendulum, it remains stable.

 

 

 

0.2

 

 

 

 

 

 

 

 

(m)

0.1

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

xp

 

 

 

 

 

 

 

 

-0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

40

 

 

 

 

 

Time

 

 

 

 

Theta(rad)

5

 

 

 

 

 

 

 

 

00

 

 

 

 

 

 

 

 

 

5

10

15

20

25

30

35

40

(Volt)

 

 

 

 

Time

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control

0

 

 

 

 

 

 

 

 

-2

 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

40

 

 

 

 

 

 

Time

 

 

 

 

Figure 11. Fractional order PI-state feedback control experimental results with disturbance on the pendulum at and , using the second method.

Conclusion

Two new pole placement fractional PI-state feedback designs algorithms are presented in this book chapter. The first one consists in choosing poles of an integer polynomial corresponding to the closed-loop fractional characteristic polynomial. Matignon’s stability condition can thus be used to ensure the stability of the closed-loop. Nevertheless, the noninteger order must be rational. In addition, the poles of the integer polynomial are not arbitrary since they must verify constraints because some of the polynomial coefficients are zero. The second method is simple to implement, it consists in choosing poles of an integer polynomial and one pole of a fractional polynomial. A judicious choice of these poles provides a closed-loop particular response obtained when the Bode’s ideal transfer function is used, that is, an overshoot of the step response imposed by the fractional order and its dynamics by the pole of the fractional polynomial. These methods are then used to stabilize an inverted pendulum-cart system. The implementation on an experimental test-bed gave good results, especially in terms of stability, accuracy and robustness with respect to the variation of the cart mass as well as external disturbances applied on the pendulum.

Complimentary Contributor Copy

88

Rachid Mansouri, Maamar Bettayeb, Chahira Boussalem et al.

 

 

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no Gr/34/5. The authors, therefore, acknowledge with thanks DSR technical and financial support.

References

[1]Abdelaziz T.H.S. and Valasek M., (2003). A direct algorithm for pole placement by state derivative feedback for single-input linear systems. Acta Polytechnica, 43, 52-60.

[2]Abdelaziz T.H.S. and Valasek M., (2004). Pole-placement for SISO linear systems by state-derivative feedback. IEE Proceedings Control Theory and Application, 151, 377-385.

[3]Abdelaziz T.H.S. and Valasek M., (2005). State derivative feedback by LQR for linear time-invariant systems. Proceeding of 16th IFAC World Congress, Prague, Czech Republic, July 3-8.

[4]Astrom K J, and Furuta K., (1996). Swinging up a pendulum by energy control.

Proceeding of IFAC 13th IFAC World Congress, San Francisco, CA, USA, June 30July 05.

[5]Astrom K.J., Aracil J., and Gordillo F., (2008). A family of smooth controllers for swinging up a pendulum. Automatica, vol. 44, 1841-1848.

[6]Axtell, M., and Bise, E. M., (1990). Fractional calculus applications in control systems.

In Proceedings of the IEEE Nat. Aerospace and Electronics Conference, New York, 8 (3-4), 563-566.

[7]Barbosa R.S., Machado J.A.T., and Ferreira I.M., (2004). Tuning of PID controllers based on Bode's ideal transfer function. Nonlinear dynamics, vol. 38, 305-321.

[8]Bettayeb M., and Djennoune S., (2008). New results on controllability and observability of fractional dynamical systems. Journal of Systems Engineering and Electronics, vol. 14 (9-10), 376-381.

[9]Bettayeb M., C. Boussalem, Mansouri R. and Al-Saggaf U. M., (2014), Stabilization of an inverted pendulum-cart system by fractional PI-state feedback, ISA transactions, vol. 53 (2), 508-516.

[10]Bode H.W., (1945). Network Analysis and Feedback Amplifier Design. Van Nostrand, New York.

[11]Chung C.C. and Hauser J., (1995). Non linear control of a swinging pendulum. Automatica, vol. 31 (6), 851-862.

[12]Das S. Saha S. Das S. and Gupta A., (2011). On the selection of tuning methodology of FOPID controllers for the control of higher order processes. ISA Transactions, vol. 50, 376-388.

[13]Dorcak, L., Petras, I., and Kostial, I., (2000). Modeling and analysis of fractional-order regulated systems in the state space. In Proceedings of ICCC'2000, vol.45, High Tatras, Slovak Republic, 185-188.

Complimentary Contributor Copy

Linear Integer Order System Control by Fractional PI-State Feedback

89

 

 

[14]Farges C. Moze M. and Sabatier J., (2009). Pseudo-state feedback stabilization of commensurate fractional order systems. Proceedings of the 10th European control conference, Budapest, Hungary, August 23-26.

[15]Farges C. Moze M. and Sabatier J., (2010). Pseudo-state feedback stabilization of commensurate fractional order systems. Automatica, vol. 46, 1730-1734.

[16]Furuta K. and Yamakita, M. (1991). Swing up control of inverted pendulum. IEEE Proceedings 1991 International Conference on Industrial Electronics, Control and Instrumentation, Kobe, Japan, October 28-November 1.

[17]Furuta K., Yamakita M. and Kobayashi S. (1992). Swing-up control of inverted pendulum using pseudo-state feedback. Journal of Systems and Control Engineering, vol. 206, 263-269.

[18]Guo G. and Ma Z., (2006). State-PID feedback control with application to a robot vibration absorber. International Journal of Modelling, Identification and Control, vol. 1 (1), 38-43.

[19]Hotzel R., and Fliess, M., (1998). On linear system with a fractional derivation: introductory theory and examples. Mathematics and Computers in Simulation, vol. 45, 385-395.

[20]Kilbas A.A., Srivastava H.M. and Trujillo J.J., (2006). Theory and Applications of Fractional Differential Equations. Elsevier, North-Holland.

[21]Leitmann G. and Reithmeier E. (2003) Robust vibration control of dynamical system based on the derivative of the state. Archive of Applied mechanics, Vol. 72, 856-864.

[22]Magin R.L., (2006). Fractional Calculus in Bioengineering. Begell House Punlishers, Inc., Connecticut.

[23]Machado, J.T., Kityakova V. and Mainardi F., (2011). Recent History of fractional calculus. Communications in Nonlinear Science and Numerical Simulation, vol. 16 (3), 1140-1153.

[24]Manabe, S., (1963). The system design by the use of a model consisting of a saturation and non-integer integrals. ETJ of Japan, vol. 8 (3-4), 147-150.

[25]Mansouri R., Bettayeb M., and Djennoune S., (2007). Multivariable fractional order system approximation using derivative representation. International Journal of Applied Mathematics, vol. 20 (7) 983-1003.

[26]Mansouri R., Bettayeb M., and Djennoune S., (2008). Non integer order system approximation by an integer reduced model. in a special issue on fractional calculus in the Journal Européen des Systèmes Automatisés, vol. 42, 689-700.

[27]Mansouri R., Bettayeb M., and Djennoune S., (2010). Multivariable fractional system approximation with Initial conditions using integral state space representation. Int. Journal on Computers and Mathematics with Applications, vol.59 (5), 1842-1851.

[28]Matignon, D., (1996). Stability results on fractional differential with application to control processing. In IAMCS, IEEE SMC Proceedings Conference, Lille, France, 963-968.

[29]Matignon, D., and d'Andréa-Novel, B., (1996). Some results on controllability and observability of finite dimensional fractional differential systems. In IAMCS, IEEESMC Proceedings Conference, Lille, France, pp. 952-956.

[30]Matignon D., (1998). Stability properties for generalized fractional differential systems. In Systèmes différentiels fractionnaires (Paris 1998), vol.5 of ESAIM: Proceedings,

145–158, Society for Industrial and Applied Mathematics, Paris, France.

Complimentary Contributor Copy

90

Rachid Mansouri, Maamar Bettayeb, Chahira Boussalem et al.

 

 

[31]Miller K.S. and Ross B., (1974). An introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley Interscience Publication.

[32]Monje C.A., Vinagre B.M., Feliu V. and Chen Y.Q., (2008). Tuning and auto-tuning of fractional order controllers for industry applications. Control Engineering Practice, vol. 16, 798–812.

[33]Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., and Feliu-Batlle, V., (2010).

Fractional-order Systems and Controls: Fundamentals and Applications. Springer Verlag.

[34]Nia S.H.H., Sierociuk D., Calderon A.J. and Vinagre B.M., (2010). Augmented System Approach for Fractional Order SMC of a DC-DC Buck Converter. Proceedings of the 4th IFAC Workshop on Fractional Differentiation and its Applications, Badajoz, Spain, october 18-20.

[35]Ogata, K., (1997). Modern Control Engineering. Third Edition, Prentice Hall.

[36]Oldham K.B. and Spanier J., (1974). The Fractional Calculus. Academic Press, New York and London.

[37]Olgac N., Elmali H., Hosek M. and Renzulli M., (1997). Active vibration control of distributed systems using delayed resonator with acceleration feedback. Journal of Dynamic Systems, Measurement and Control, vol.119 (3), 380-389.

[38]Oustaloup A., (1991). La Commande CRONE. Hermès Edition, Paris.

[39]Oustaloup, A., (1995). La Dérivation Non Entière: Théorie, Synthèse et Applications. Hermès Edition, Paris, France.

[40]Oustaloup A. and Mathieu B., (1999). La Commande CRONE du Scalaire au Multivariable. Hermès Editeur, Paris.

[41]Podlubny I., (1999). Fractional Differential Equations. Academic Press, San Diego.

[42] Poblubny I., (1999). Fractional-Order System and

. JIEEE Transactions on

automatic control, vol. 44 (1), 208-214.

 

[43]Raynaud, H. F., and Zergainoh, A., (2000). State space representation for fractional order controllers. Automatica, vol. 36, 1017-1021.

[44]Samko S.G., Kilbas A.A. and Marichev O.I., (1993). Fractional Integrals and Derivatives. Gordon and Breach Science Publishers.

[45]Srinivasan B., Huguenin P., and Bonvin D., (2009). Global stabilization of an inverted pendulum - Control stategy and experimental verification. Automatica, vol. 45, 265269.

[46]Sierociuk D. and Vinagre B.M., (2010). State and Output Feedback Fractional Control by System Augmentation. Proceedings of the 4th IFAC Workshop on Fractional Differentiation and its Applications, Badajoz, Spain, october 18-20.

[47]Tavakoli-Kakhki M., and Haeri M., (2010). The minimal state space realization for a class of fractional order transfer functions. SIAM Journal on Control and Optimization, vol. 48 (7), 4317-4326.

[48]Tavakoli-Kakhki M, Haeri M, and Tavazoei M.S, (2011). Notes on the state space realizations of rational order transfer functions. IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58 (5), 1099-1108.

[49]Vinagre, B. M., Monje, C. A., and Caldero, A. J., (2002). Fractional order systems and fractional order actions. Tutorial Workshop # 2: Fractional Calculus Applications in Automatic Control and Robotics, 41st IEEE CDC, Las Vegas.

Complimentary Contributor Copy

Linear Integer Order System Control by Fractional PI-State Feedback

91

 

 

[50]Wiboonjaroen W., and Sujitjorn S., (2011). Stabilization of an Inverted Pendulum System via State-PI Feedback. International Journal of Mathematical models and methods in applied sciences, vol. 5. (41), 763-772.

[51]Zeng Q., Cao G., and Zhu X., (2005). Research on controllability for a class of fractional-order linear control systems. Journal of Vibration and Control, vol. 14 (9- 10), 1531-1541.

Complimentary Contributor Copy

Complimentary Contributor Copy