Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

БЖД,. Тема 3 3.1-3

.3.pdf
Скачиваний:
3
Добавлен:
12.04.2022
Размер:
364.59 Кб
Скачать

Тема 3.

Источники и характеристики основных негативных факторов среды обитания (техногенные опасности) и защита от них

3.1. Классификация негативных факторов среды обитания

Негативные факторы, воздействующие на людей, подразделяются на есте-

ственные (природные) и искусственные.

Естественные опасности возникают при стихийных явлениях в биосфере. Характерной особенностью естественных опасностей является неожиданность их возникновения, но некоторые из них человек научился предсказывать, например ураганы, цунами и другие. Возникновение искусственных опасностей связано, прежде всего, с активной техногенной деятельностью человека.

По характеру воздействия на человека все опасности разделяются на вредные и травмирующие (опасные).

Опасным производственным фактором называется фактор, воздействие кото-

рого приводит к травме или иному варианту ухудшения здоровья.

Травма – повреждение тканей организма и нарушение его функций внешним воздействием в результате несчастного случая, в том числе на производстве.

Поражающие производственные факторы:

-электрический ток определенной силы;

-раскаленные тела;

-возможность падения с высоты человека или различных предметов;

-оборудование, работающее под давлением выше атмосферного, и т.д.

Техника безопасности – раздел охраны труда, в котором изучаются опасные производственные факторы с целью защиты от них работающих.

Вредный производственный фактор – фактор трудового процесса, воздействие которого на работающего при определенных условиях (интенсивность, длительность и др.) может вызвать профессиональное заболевание, временное или стойкое снижение работоспособности, повысить частоту соматических или инфекционных заболеваний, привести к нарушению здоровья потомства.

Вредные факторы при длительном их воздействии приводят к ухудшению самочувствия или заболеванию человека. К вредным факторам относят: воздействия токсичных веществ, содержащихся в атмосфере, воде, продуктах питания; недостаточную освещенность, повышенные или пониженные температуры воздуха, снижение содержания кислорода в воздухе помещения, шум, вибрацию, электромагнитные поля, ионизируюшие излучения.

Заболевания, возникающие под действием вредных производственных факто-

ров, называются профессиональными.

Раздел охраны труда, изучающий вредные производственные факторы с целью защиты от них работающих, называется производственной санитарией.

Классификация опасных и вредных факторов среды обитания

Опасные и вредные производственные факторы подразделяются на физические, химические, биологические и психофизиологические (рисунок 3.1).

1

Рисунок 3.1 – Классификация опасных и вредных производственных факторов

Физические факторы – электрический ток, кинетическая энергия движущихся машин и оборудования или их частей, повышенное давление паров или газов в сосудах, недопустимые уровни шума, вибрации, инфра- и ультразвука, недостаточная освещенность, электромагнитные поля, ионизирующие излучения и др.

Биологически опасными и вредными факторами являются:

патогенные микроорганизмы (бактерии, вирусы, риккетсии, спирохеты, грибы, простейшие) и продукты их жизнедеятельности;

растения и животные.

Биологические загрязнения окружающей среды возникают в результате аварий на биотехнических предприятиях и очистных сооружениях.

Химические факторы представляют собой вредные для организма человека вещества в различных состояниях. К химически опасным и вредным факторам относятся:

вредные вещества, используемые в технологических процессах;

промышленные яды;

лекарственные средства, применяемые не по назначению. Психофизиологические производственные факторы – это факторы, обусловлен-

ные особенностями характера и организации труда, параметров рабочего места и оборудования. По характеру действия психофизиологические негативные факторы делятся на физические (статические и динамические) и нервно-психические перегрузки: умственное перенапряжение, перенапряжение анализаторов, монотонность труда, различные эмоциональные перегрузки. Эти факторы могут оказывать неблагоприятное воздействие на функциональное состояние организма человека, его самочувствие, эмоциональную и интеллектуальную сферы, приводить к снижению работоспособности и нарушению состояния здоровья.

Один и тот же опасный и вредный фактор среды обитания по природе своего действия может относиться одновременно к различным группам.

Информацию о внешней и внутренней среде организма человек получает с помощью сенсорных систем (анализаторов). Основной характеристикой анализатора является чувствительность рецептора, то есть способность воспринимать раздражитель.

Поскольку в обычных условиях человек чрезвычайно редко сталкивается с прекращением воздействия раздражителей, он не сознает этих воздействий и не отдает себе отчета, насколько важным условием для его нормального функционирования является «загруженность» анализаторов. Следует учитывать, что отсутствие раздражителей или низкий уровень их интенсивности может приводить к снижению ре-

2

зистентности и адаптационных возможностей организма. Так, отсутствие светового раздражителя может привести к атрофии зрительного анализатора, звукового – к атрофии слухового анализатора, отсутствие речевого воздействия (врожденная глухота) делает человека немым. В связи с урбанизацией, автоматизацией большинства технологических процессов в настоящее время значительная часть населения находится в состоянии гиподинамии, испытывает мышечный голод, что приводит к детренированности организма, отрицательно влияет на состояние сердечно-сосудистой системы и т. д.

Зрительная система. Важнейшей предпосылкой правильной ориентации человека в окружающей среде является зрение. Зрительный анализатор позволяет получить представление о предмете, его цвете, форме, величине, о том, находится ли предмет в движении или покое, о расстоянии его от нас, потенциальной опасности, которую он несет. Таким образом, около 80% всей информации человек получает в результате реакции на визуальное раздражение.

Восприятие визуальной информации ограничено пределами так называемого поля зрения. Поле зрения – это пространство, обозреваемое человеком при неподвижном состоянии глаз и головы, это та сфера, электромагнитные волны в которой возбуждают визуальные ощущения. В пределах угла зрения в 30...40° условия для видения оптимальны. В этом секторе целесообразно помещать основные носители информации, так как в нем воспринимаются и движения, и резкие контрасты.

Для переработки световых сигналов любого вида важно, чтобы зрительный анализатор обладал способностью приспосабливаться к внешним условиям. Поэтому главной особенностью человеческого глаза является способность к аккомодации (способность зрения приспосабливаться к расстоянию до обозреваемого предмета) и адаптации (способность зрения приспосабливаться к световым условиям окружающей среды). Способность зрительного аппарата к приспособлению обеспечивает остроту зрения (способность глаза различать наименьшие детали предмета), контрастную чувствительность (способность глаза различать минимальную разность яркостей рассматриваемого предмета и фона), скорость узнавания (наименьшее время, необходимое для различения деталей предмета).

Ощущение, вызванное световым сигналом, сохраняется в глазу в течение некоторого времени, несмотря на исчезновение сигнала. Эта инерция зрения, как показывают исследования, находится в пределах от 0,1 до 0,3 с. Благодаря инерции зрения при определенной частоте мелькающий сигнал начинает восприниматься как постоянно светящийся источник. Такую частоту называют критической частотой слияния мельканий. Если мелькания света используются в качестве сигнала, частота слияния должна быть оптимальной – 3-10Гц.

Инерция зрения обусловливает стробоскопический эффект. Если время, разделяющее дискретные акты наблюдения, меньше времени гашения зрительного образа, то наблюдение субъективно ощущается как непрерывное. При этом эффекте возможна иллюзия движения при прерывистом наблюдении отдельных объектов, иллюзия неподвижности (замедления движения), возникающая, когда движущийся предмет периодически занимает прежнее положение, иллюзия вращения в противоположную от реального направления сторону, когда частота вспышек света больше числа оборотов вращающегося предмета.

3

В диапазоне воспринимаемого зрением спектра (длина волн 380-760 нм) происходит качественная оценка зрительного ощущения, обусловленного цветом. Цвет – это результат аналитической оценки зрением светового потока. Ощущение цвета возникает, когда спектр отклоняется от нейтрального или бесцветного (дневного) света и в нем возникают участки различного спектрального состава (с определенной длиной волн) или доминируют волны определенной длины. У людей наблюдаются отклонения от нормального восприятия цвета. К этим отклонениям относятся: цветовая слепота (человек воспринимает все цвета как серые), дальтонизм (человек не различает отдельные цвета, обычно красный и зеленый), «куриная слепота» (человек с наступлением темноты теряет зрение).

Глаз, обеспечивая безопасность человека, и сам снабжен естественной защитой. Рефлекторно закрывающиеся веки защищают сетчатку глаза от сильного света, а роговицу от механических воздействий. Слезная жидкость смывает с поверхности глаз

ивек пылинки, убивает микробы благодаря наличию в ней лизоцима. Защитную функцию выполняют и ресницы. Однако, несмотря на совершенство, естественная защита для глаз оказывается недостаточной. Поэтому при опасных для глаз условиях следует обязательно применять искусственные средства защиты.

Зрительное восприятие цвета, переработка получаемой зрительной информации в большой мере зависят от освещения. Поэтому необходимо уделять особое внимание формированию светового климата.

Слуховая система. Мир наполнен звуками. Они доставляют человеку многочисленную информацию. Одни звуки приятны, другие отрицательно влияют на здоровье человека. Некоторые звуки выполняют роль сигналов, предупреждая об опасности. Оценить мир звуков человек может с помощью органа слуха.

Ухо человека состоит из трех «основных» частей: наружного уха, среднего уха

ивнутреннего уха. Звуковые волны направляются в слуховую систему через наружное ухо к барабанной перепонке, колебания которой механическим путем через среднее ухо передаются внутреннему уху, где колебания барабанной перепонки преобразуются в колебания со значительно меньшей амплитудой, но более высокого давления. Возбуждение нервных окончаний слухового нерва доходит до коры головного мозга и вызывает восприятие звука. Механические колебания создают слуховое восприятие, когда их частота лежит в области 16-20000 Гц. Слуховое восприятие изображается на диаграмме кривой порога слышимости с помощью нанесения величин звукового давления, при которых на каждой частоте возникает ощущение звука. Кривая зависит от индивидуальных особенностей, возраста людей.

Слуховой анализатор обладает высокой чувствительностью, позволяет человеку воспринимать широкий диапазон звуков окружающей среды и анализировать их по силе, высоте тона, окраске, отмечать изменения по интенсивности и частотному составу, определять направление прихода звука.

Рассмотрим лишь одну из замечательных особенностей слуховой сенсорной си-

стемы, имеющей прямое отношение к безопасности ее способность распознавать местонахождение источника звука. Это явление называется бинауральным эффектом. Физическая основа такой способности в том, что распространяясь с конечной скоростью, звук достигает более удаленного уха позже и с меньшей силой, а слуховая система способна выявить ее разницу в двух ушах уже при уровне 1 дБ и при за-

4

паздывании 0,0006 с. Бинауральный слух имеет и иную, более важную, чем ориентация в пространстве, функцию: он помогает анализировать акустическую информацию в присутствии посторонних шумов. «Межушные» различия в интенсивности и направленности поступления сигналов используются центральной нервной системой для подавления фонового шума и выделения полезных звуков (например, позволяют сосредоточиться на нужном разговоре в многолюдном собрании).

Вестибулярная система. Данная система обеспечивает поддержание нужного положения тела и соответствующие глазодвигательные реакции. Равновесие поддерживается рефлекторно, без принципиального участия в этом сознания.

Выделяют статические и статокинетические рефлексы. Статические рефлексы обеспечивают адекватное взаиморасположение конечностей, а также устойчивую ориентацию тела в пространстве, то есть позные рефлексы. Статокинетические рефлексы – это реакции на двигательные стимулы, самовыражающиеся в движениях, например, движения человека, восстанавливающего равновесие после того, как он споткнулся.

Сильные раздражения вестибулярного аппарата часто вызывают неприятные ощущения: головокружение, рвоту, усиленное потоотделение, тахикардию и т. д. Скорее всего, это результат воздействия необычных для организма раздражений: вращательного ускорения или расхождения между зрительными и вестибулярными сигналами. Возникающие вследствие этого сенсорные иллюзии часто приводят к авариям. Например, пилот перестает замечать вращение или его остановку, неправильно воспринимает его направление и соответственно неадекватно реагирует.

У современных людей статокинетическая устойчивость снижается вследствие изменения структуры их труда. Труд современного человека становится все более умственным, а физическая его доля неудержимо уменьшается. Человек стал значительно меньше активно передвигаться в пространстве. В этих условиях статокинетическая устойчивость у современных людей снижается и актуальными становятся такие явления, как гиподинамия и гипокинезия.

При нарушении функций вестибулярного аппарата в той или иной мере снижается работоспособность человека, а, следовательно, снижается и безопасность движения, если речь идет о водительском составе (пилоты, водители, моряки, космонавты). Если речь идет о пассажирах, то это состояние лишает их комфорта, а при наличии у них заболеваний, особенно сердечно-сосудистой системы, может привести к тяжелым осложнениям.

Тактильная, температурная, болевая системы. Кожа является тем органом, который отделяет внутреннюю среду человека от внешней, надежно охраняя ее постоянство. Ощущения, обеспечиваемые кожей, создают связь с внешним миром. Посредством осязания (тактильных ощущений) мы узнаем о трехмерных особенностях нашего окружения; с помощью терморецепции воспринимаем тепло и холод; с помощью ноцицепции (процесс восприятия повреждения) ощущаем боль, распознаем потенциально опасные стимулы.

Снаружи кожа покрыта тонким слоем покровной ткани – эпидермисом, состоящим из нескольких слоев довольно мелких клеток, постоянно обновляемых. За эпидермисом следует собственно кожа – дерма. Здесь находятся многочисленные рецепторы, воспринимающие давление (прикосновение), холод и тепло, боль.

5

Первая функция кожи – механическая. Она предохраняет лежащие глубже ткани от повреждений, высыхания, физических, химических и биологических воздействий и, как уже отмечалось, выполняет барьерную функцию.

Вторая функция кожи связана с процессами терморегуляции, благодаря которым сохраняется постоянная температура тела. В коже человека находятся два вида анализаторов: одни реагируют только на холод (около 250 тысяч), другие – только на тепло (около 30 тысяч). Температура кожи несколько ниже температуры тела и различна для отдельных участков. Продолжительное ощущение тепла при температуре кожи выше 36°С тем сильнее, чем выше эта температура. При температуре около 45°С чувство тепла сменяется болью от горячего. Когда обширные области тела охлаждаются до температуры ниже 30°С, возникает ощущение холода. Боль от холода возникает при температуре кожи 17°С и ниже. Если охлаждение идет очень медленно, человек может не заметить, как обширные участки кожи стали совсем холодными (при одновременной потере тепла телом), особенно, если его внимание отвлечено чем-то другим. Предположительно этот фактор действует, когда человек простужается.

Под тактильной чувствительностью понимают ощущение прикосновения и давления. В среднем на 1 см2 кожи находится около 25 рецепторов. Абсолютный порог тактильной чувствительности определяется по тому минимальному давлению предмета на кожную поверхность, при котором наблюдается едва заметное ощущение прикосновения. Наиболее развита чувствительность на дистальных частях тела (наиболее удаленных от оси тела).

Характерной особенностью тактильного анализатора является быстрое развитие адаптации, то есть исчезновение чувства прикосновения или давления. Благодаря адаптации мы не чувствуем прикосновения одежды к телу.

Ощущение боли воспринимается специальными рецепторами. Они рассеяны по всему нашему телу, на 1 см2 кожи находится около 100 таких рецепторов. Чувство боли возникает в результате раздражения не только кожи, но и ряда внутренних органов. Часто единственным сигналом, предупреждающим о неблагополучии в состоянии того или другого внутреннего органа, является боль.

Вотличие от других сенсорных систем боль дает мало сведений об окружающем нас мире, а скорее сообщает о внешних или внутренних опасностях, грозящих нашему телу. Тем самым она защищает нас от долговременного вреда и поэтому необходима для нормальной жизнедеятельности. Если бы боль не предостерегала, уже при самых обыденных действиях мы часто наносили бы себе повреждения.

Биологический смысл боли в том, что являясь сигналом опасности, она мобилизует организм на борьбу за самосохранение. Под влиянием болевого сигнала перестраивается работа всех систем организма и повышается его реактивность.

Принципы нормирования опасных и вредных факторов.

Нормирование – это определение количественных показателей факторов окружающей среды, характеризующих безопасные уровни их влияния на состояние здоровья и условия жизни населения.

Взависимости от нормируемого фактора окружающей среды различают:

-предельно допустимые концентрации (ПДК);

-допустимые остаточные количества (ДОК);

6

-предельно допустимые уровни (ПДУ);

-ориентировочные безопасные уровни воздействия (ОБУВ);

-предельно допустимые выбросы (ПДВ);

-предельно допустимые сбросы (ПДС) и др.

Предельно допустимый уровень фактора (ПДУ) – это тот максимальный уро-

вень воздействия, который при постоянном действии в течение всего рабочего времени и трудового стажа не вызывает биологических изменений адаптационнокомпенсаторных возможностей, психологических нарушений у человека и его потомства.

3.2. Виды и условия трудовой деятельности

Труд в зависимости от характера деятельности человека можно условно разделить на физический, связанный в основном со статической или динамической нагрузкой на мышцы, и умственный, связанный в основном с нагрузкой на определенные группы анализаторов (зрительные, слуховые, тактильные).

Тяжесть физического труда может быть оценена по нагрузке, приходящейся на мышцы человека в течение определенного времени, тяжесть умственного труда может быть оценена по его напряженности.

По степени физической тяжести работы делятся на легкие (I категория), сред-

ней тяжести (II категория) и тяжелые (III категория).

Ккатегории относятся работы с интенсивностью энергозатрат до 120 ккал/ч (до 139 Вт), производимые сидя и сопровождающиеся незначительным физическим напряжением (ряд профессий на предприятиях точного приборо- и машиностроения, на часовом, швейном производствах, в сфере управления и т. п.).

Ккатегории относятся работы с интенсивностью энергозатрат 121-150 ккал/ч (140-174 Вт), производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением (ряд профессий в полиграфической промышленности, на предприятиях связи, контролеры, мастера в различных видах производства и т. п.).

Ккатегории IIа относятся работы с интенсивностью энергозатрат 151-200 ккал/ч (175-232 Вт), связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения (ряд профессий в механо-сборочных цехах машиностроительных предприятий, в прядильно-ткацком производстве и т. п.).

Ккатегории IIб относятся работы с интенсивностью энергозатрат 201-250 ккал/ч (232-290 Вт), связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением (ряд профессий в механизированных литейных, прокатных, кузнечных, термических, сварочных цехах машиностроительных и металлургических предприятий и т. п.).

Ккатегории III относятся работы с интенсивностью энергозатрат более 250 ккал/ч (более 290 Вт), связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий (ряд профессий в кузнечных цехах с ручной ковкой, литейных цехах с ручной набивкой и заливкой опок машиностроительных и металлургических предприятий и т.п.).

7

Условия труда по степени вредности и (или) опасности подразделяются на четыре класса – оптимальные, допустимые, вредные и опасные условия труда (ст. 14 Федерального закона от 28.12.2013 № 426-ФЗ «О специальной оценке условий труда»).

3.3. Обеспечение комфортных условий для жизни и деятельности человека

Воздушная среда помещений Микроклимат – это искусственно создаваемые в закрытых помещениях усло-

вия для защиты от неблагоприятных внешних воздействий и создания комфорта. Показателями, характеризующими микроклимат, являются:

1)

температура воздуха, °С;

 

2)

относительная влажность воздуха, %;

 

3)

скорость движения воздуха, м/с;

 

4)

интенсивность теплового излучения, Вт/м2.

.

Способность человеческого организма поддерживать постоянной температуру тела при изменении параметров микроклимата и при выполнении различной по тяжести работы называется терморегуляцией. Она обеспечивает установление определенного соотношения между теплообразованием в результате изменения обмена веществ (химическая терморегуляция) и теплоотдачей (физическая терморегуляция).

Микроклимат, оказывая непосредственное воздействие на терморегуляцию, имеет огромное значение для поддержания комфортного состояния организма. Нормальная жизнедеятельность осуществляется в том случае, если тепловое равновесие, т.е. соответствие между теплопродукцией вместе с теплотой, получаемой из окружающей среды, и теплоотдачей достигается без напряжения процессов терморегуляции. Дискомфортный микроклимат вызывает напряжение процессов терморегуляции, ухудшается функция анализаторов, понижается работоспособность и качество труда.

Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны» и СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания». Они едины для всех производств и всех климатических зон с некоторыми незначительными отступлениями.

Нормируется каждый показатель микроклимата в рабочей зоне производственного помещения: температура, относительная влажность, скорость воздуха в зависимости от способности организма человека к акклиматизации в разное время года, характера одежды, интенсивности производимой работы и характера тепловыделений в рабочем помещении.

Для оценки характера одежды (теплоизоляции) и акклиматизации организма в разное время года введено понятие периода года. Различают теплый и холодный период года. Теплый период года характеризуется среднесуточной температурой наружного воздуха выше +10 °С, холодный – равной +10 °С и ниже.

8

Рабочая зона – пространство, ограниченное по высоте 2 м над уровнем пола или площадки, на которых находятся места постоянного или непостоянного (временного) пребывания работающих.

Рабочее место – место постоянного или временного пребывания работающих в процессе трудовой деятельности.

Постоянное рабочее место – место, на котором работающий находится большую часть своего рабочего времени (более 50% или более 2 ч непрерывно). Если при этом работа осуществляется в различных пунктах рабочей зоны, постоянным рабочим местом считается вся рабочая зона.

Непостоянное рабочее место – место, на котором работающий находится меньшую часть (менее 50% или более 2 ч непрерывно) своего рабочего времени.

При учете интенсивности труда все виды работ, исходя из общих энергозатрат организма, делятся на три категории: легкие, средней тяжести и тяжелые. Характеристику производственных помещений по категории выполняемых в них работ устанавливают по категории работ, выполняемых 50% и более работающих в соответствующем помещении.

По интенсивности тепловыделений производственные помещения делят на группы в зависимости от удельных избытков явной теплоты. Явной называется теплота, воздействующая на изменение температуры воздуха помещения, а избытком явной теплоты – разность между суммарными поступлениями явной теплоты и суммарными теплопотерями в помещении.

Явная теплота, которая образовалась в пределах помещения, но была удалена из него без передачи теплоты воздуху помещения (например, с газами от дымоходов или с воздухом местных отсосов от оборудования), при расчете избытков теплоты не учитывается. Незначительные избытки явной теплоты – это избытки теплоты, не превышающие или равные 23 Вт на 1 м3 внутреннего объема помещения. Помещения со значительными избытками явной теплоты характеризуются избытками теплоты более 23 Вт/м3.

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м2 при облучении 50% поверхности человека и более, 70 Вт/м2 – при величине облучаемой поверхности от 25 до 50% и 100 Вт/м2 – при облучении не более 25% поверхности тела.

Интенсивность теплового облучения работающих от открытых источников (нагретый металл, стекло, «открытое» пламя и др.) не должна превышать 140 Вт/м2, при этом облучению не должно подвергаться более 25% поверхности тела и обязательным является использование средств индивидуальной защиты, в том ч исле средств защиты лица и глаз.

Аэроионный состав воздуха оказывает существенное влияние на самочувствие работника, а при отклонении от допустимых значений концентрации ионов во вдыхаемом воздухе может создаваться даже угроза здоровью работающих. Как повышенная, так и пониженная ионизация относятся к вредным физическим факторам и поэтому регламентируются санитарно-гигиеническими нормами.

В соответствии с СанПиН 1.2.3685-21, нормируемыми показателями аэроионного состава воздуха производственных и общественных помещений являются:

9

концентрации аэроионов (минимально допустимая и максимально допустимая)

обеих полярностей ρ+ , ρ, определяемые как количество аэроионов в одном куби-

ческом сантиметре воздуха (ион/см3); коэффициент униполярности У (минимально допустимый и максимально допу-

стимый), определяемый, как отношение концентрации аэроионов положительной полярности к концентрации аэроионов отрицательной полярности.

 

 

 

Таблица 3.1

 

 

 

 

Нормируемые

Концентрация аэроионов, ρ (ион/см3)

Коэффициент

показатели

 

 

униполярности, У

положительной

отрицательной

 

полярности

полярности

 

 

 

 

 

Минимально

ρ+ 400

ρ> 600

 

допустимые

 

 

от 0,4 до 1

Максимально

ρ+ < 50000

ρ50000

 

допустимые

 

 

 

Для обеспечения нормальной жизнедеятельности количество отрицательных аэроионов должно превышать количество положительных. В естественных условиях наиболее благоприятным является воздух около движущейся воды (водопада, на берегу моря), в хвойном лесу.

Для нормализации ионного режима воздушной среды на производстве используются приточно-вытяжная вентиляция, групповые и индивидуальные ионизаторы, устройства автоматического регулирования ионного режима.

В рабочей зоне производственного помещения согласно ГОСТ 12.1.005-88 могут быть установлены оптимальные и допустимые микроклиматические условия.

Оптимальные показатели микроклимата – это сочетание количественных по-

казателей микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального теплового состояния организма без напряжения механизмов терморегуляции. Они обеспечивают ощущение теплового комфорта и создают предпосылки для высокого уровня работоспособности.

Допустимые показатели микроклимата – это сочетания количественных пока-

зателей микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать преходящие и быстро нормализующиеся изменения теплового состояния организма, сопровождающиеся напряжением механизмов терморегуляции, не выходящим за пределы физиологических приспособительных возможностей. При этом не возникает повреждений или нарушений состояния здоровья, но могут наблюдаться дискомфортные теплоощущения, ухудшение самочувствия и понижение работоспособности.

Оптимальные показатели микроклимата распространяются на всю рабочую зону, допустимые показатели устанавливаются дифференцированно для постоянных и непостоянных рабочих мест. Оптимальные и допустимые показатели температуры,

10