Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Mikra_2_itog.docx
Скачиваний:
30
Добавлен:
12.03.2022
Размер:
1.38 Mб
Скачать

Химический состав бактериальной клетки: содержание, локализация в клеточных структурах и биологическая роль воды, белков, нуклеиновых кислот, липидов, углеводов и минеральных веществ. Источники азота, углерода. Факторы роста.

Значительную часть клетки составляет вода - от 70 до 85% от об­щей массы. Вода служит средой, в которой протекают разнообразные химические процессы микробной клетки. В ней растворяются кристал­лоиды, диссоциируют электролиты, формируются коллоиды. Кроме того, сама вода как химический компонент, непосредственно участву­ет в реакциях гидролиза белков, углеводов и липоидов. Количество воды в клетке постоянно, и это постоянство регулируется цитоплазматической мембраной.

Сухой остаток микробной клетки составляет от 15% до 30%. Из них половина приходится на белки. Это простые белки - протеины и сложные белки - протеиды. Аминокислотный состав белков характе­рен для различных видов микроорганизмов. Белки входят в состав ферментов. Белками являются экзотоксины, с которыми связана патогенность целого ряда микробов; белками являются многие антигены, с ними связана специфичность микробов.

Нуклеиновые кислоты являются важнейшими компонентами микробов. В ДНК зашифрована вся наследственная информация клет­ки, а РНК участвует в процессах считывания информации, передачи се на рибосомы и синтеза в них белка - соответственно: матричная РНК (мРНК), рибосомальная РНК (рРНК) и транспортная РНК (тРНК).

Установлено, что состав нуклеотидов ДНК, а именно соотноше­ния гуанин + цитозин/аденин + тимин является стабильным признаком. Поэтому его можно использовать для определения таксономического положения бактерий. Например, у стафилококков процентное содер­жание Г+Ц-28%-39%, а у сходных с ними микрококков Г+Ц=65%-83%, следовательно, они принадлежат к разным родам.

Липиды у бактерий, не содержащих жировые вещества в виде вклю­чений, составляют около 10% сухого остатка. У бактерий, имеющих особые жировые включения, например, у микобактерий туберкулеза, количество липидов достигает 40%, что обеспечивает этим бактериям устойчивость к кислотам, щелочам, спиртам. В состав липидов входят нейтральные жиры, фосфолипиды и свободные жирные кислоты. Фосфолипиды являются составной частью цитоплазматической мембра­ны, принимают участие в транспорте веществ. Липиды входят в со­став липополисахарида клеточной стенки грамотрицательных бакте­рий - это их эндотоксин и О-антиген.

Углеводы выполняют в клетке пластическую роль и являются ис­точником энергии, необходимым для обменных процессов. Количество углеводов в клетке непостоянно даже у одной и той же бактерии (от 10% до 30%) и зависит не только от рода и вида, но и от условий разви­тия микробов. Бактерии содержат моносахариды, дисахариды, полисахариды. У некоторых бактерий полисахаридный антиген настолько специфичен, что позволяет разграничить отдельные типы внутри вида. Например, капсульный антиген пневмококков, поверхностный С-антиген стрептококков.

Минеральные вещества микроорганизмов разнообразны, коли­чество и состав их зависит от вида микробов и состава питательной среды. Основные элементы, необходимые для жизнедеятельности клет­ки - натрий, калий, фосфор, кальций, магний, железо, медь, сера, хлор, кремний. Некоторые металлы - железо, кальций - входят в состав фер­ментов. Фосфор входит в состав аденозинтрифосфорной кислоты, ко­торая является своеобразным аккумулятором энергии. Ионы металлов участвуют в поддержании постоянства осмотического давления, реак­ции среды (рН) в клетке. Реакция цитоплазмы слабощелочная. Заряд на поверхности бактерий - отрицательный, у спирохет - положитель­ный. Благодаря одноименному заряду, бактерии в физрастворе обра­зуют равномерно-мутную взвесь. Склеивание их между собой и обра­зование хлопьев наблюдается при реакции агглютинации, а также при потере поверхностного заряда клетки, например, у шероховатых R-форм бактерий.

Что такое энергетический и конструктивный метаболизм? Особенности обмена веществ бактерий. Ферменты бактерий. Механизм расщепления веществ. Способы поступления их в клетку. Типы питания микробов. Могут ли микроорганизмы изменить тип питания? Каковы типы питания патогенных микробов?

Питание микробов (конструктивный метаболизм).

Как у всего живого, метаболизм микроорганизмов состоит из двух взаимосвязанных, одновременно протекающих, но противоположных процессов - анаболизма, или конструктивного метаболизма, и катабо­лизма, или энергетического метаболизма.

Обмен веществ у микроорганизмов имеет свои особенности.

1) Быстрота и интенсивность обменных процессов. За сутки мик­робная клетка может переработать такое количество питательных ве­ществ, которое превышает ее собственный вес в 30-40 раз.

2) Выраженная приспособляемость к изменяющимся условиям внешней среды.

3) Питание осуществляется через всю поверхность клетки. Прокариоты не проглатывают питательные вещества, не переваривают их внутри клетки, а расщепляют их вне клетки с помощью экзоферментов до более простых соединений, которые транспортируются в клетку.

Для роста и жизнедеятельности микроорганизмов обязательно на­личие в среде обитания питательных материалов для построения ком­понентов клетки и источники энергии. Для микробов необходимы вода, источники углерода, кислорода, азота, водорода, фосфора, калия, на­трия и других элементов. Требуются также микроэлементы: железо, марганец, цинк, медь для синтеза ферментов. Различные виды микро­бов нуждаются в тех или иных факторах роста, таких, как витамины, аминокислоты, пуриновые и пиримидиновые основания.

В зависимости от способности усваивать органические или не­органические источники углерода и азота микроорганизмы делятся

на две группы - аутотрофов и гетеротрофов.

Аутотрофы (греч. autos - сам, trophic - питающийся) получают уг­лерод из углекислоты (СО2) или ее солей. Из простых неорганических соединений они синтезируют белки, жиры, углеводы, ферменты.

Гетеротрофы (греч. heteros - другой, trophic - питающийся) исполь­зуют сложные органические соединения, такие как углеводы, спирты, аминокислоты, органические кислоты. Среди гетеротрофных микро­организмов различают сапрофитов (греч. sapros - гнилой, phyton - рас­тение) и паразитов. Сапрофиты используют мертвые органические соединения. Они широко распространены в природе, разлагают органи­ческие вещества, отбросы, участвуя таким образом в санитарной очи­стке окружающей среды. Паразиты живут и размножаются в тканях человека, животных, растений.

Микробы могут изменять свой тип питания с паразитического на сапрофитный. Их можно культивировать вне организма, на пита­тельных средах. Среди прокариотов исключение составляют риккетсии и хламидии, которые могут жить только в живых клетках хозяина. Их называют строгими, или облигатными паразитами (лат. obligatus - обязательный). Облигатными паразитами являются также все вирусы.

Транспорт питательных веществ

Через клеточную стенку и цитоплазматическую мембрану внутрь клетки прокариотов проникают только небольшие молекулы, поэтому белки, полисахариды и другие биополимеры вначале расщепляются экзоферементами до более простых соединений, которые транспорти­руются внутрь клетки.

Проникновение питательных веществ в клетку происходит с по­мощью различных механизмов.

Пассивная диффузия - вещества поступают в клетку за счет диф­фузии по градиенту концентрации, то есть вследствие того, что кон­центрация вне клетки выше, чем внутри.

Облегченная диффузия - также совершается по градиенту кон­центрации, но с участием ферментов-переносчиков, так называемых пермеаз. Этот фермент присоединяет к себе молекулы вещества на внеш­ней стороне цитоплазматической мембраны и отдает его на внутрен­ней стороне в неизмененном виде. Затем свободный переносчик пере­мещается снова к наружной стороне мембраны, где связывает новые молекулы вещества. При этом каждая пермеаза переносит какое-то определенное вещество.

Эти два механизма переноса не требуют энергетических затрат.

Активный перенос происходит также с участием пермеаз, причем осуществляется против градиента концентрации. Микробная клетка может накопить вещество в концентрации, в тысячи раз превышаю­щих ее во внешней среде. Такой процесс требует затрат энергии, то есть расходуется АТФ.

Транслокация радикалов - это четвертый механизм передачи ве­ществ. Это активный перенос химически измененных молекул, с учас­тием пермеаз. Например, такое простое вещество, как глюкоза, пере­носится в фосфорилированном виде.

Выход веществ из бактериальной клетки происходит путем пас­сивной диффузии или путем облегченной диффузии с участием пермеаз.

Каким требованиям должны соответствовать питательные среды? Классификация питательных сред по консистенции, по целевому назначению. Основные питательные среды. Специальные питательные среды, их названия; для каких бактерий предназначены? Элективные питательные среды, состав, применение. Приведите примеры.

По происхождению среды подразделяют на естественные, искусственные и синтетические. К естественным питательным средам относятся натуральные продукты животного или растительного происхождения – молоко, яйца, овощи, животные ткани, желчь, сыворотка крови. Искусственные среды готовятся по определённым рецептам из различных настоев или отваров животного или растительного происхождения с добавлением неорганических солей, углеводов и азотистых веществ. Синтетические среды содержат определённые химические соединения в точно указанных концентрациях.

По составу среды делятся на простые и сложные. К простым средам относятся такие, как мясо-пептонный агар (МПА), мясо-пептонный бульон (МПБ). Сложные среды в своём составе содержат различные дополнительные компоненты, необходимые для роста микроорганизмов.

По консистенции среды подразделяют на жидкие, полужидкие, плотные, сыпучие. Жидкие среды чаще применяют для изучения физико-биохимических особенностей микроорганизмов, для накопления биомассы и продуктов обмена в микробиологической промышленности. Полужидкие среды обычно используют для длительного хранения культур. Они содержат в своём составе 0,5-0,7% агар-агара, который в настоящее время используют в качестве уплотнителей для питательных сред. Агар-агар представляет собой полисахарид, выделенный из морских водорослей. Он способен образовывать в воде гель, плавящийся при 1000С и уплотняющийся при 450С и ниже. Большинство микроорганизмов не используют его в качестве питательного субстрата. Плотные среды, содержащие 1,5-2% агар-агара, применяются для выделения чистых культур микроорганизмов, изучения морфологии колоний, количественного учёта, определения антагонистических свойств и других целей. Сыпучие среды используют для хранения посевного материала, культур-продуцентов в микробиологической и медицинской промышленности. К ним относят разваренное пшено, кварцевый песок, пропитанный питательным раствором.

Питательные среды по целевому назначению могут быть разделены на основные, специальные, элективные и дифференциально-диагностические. Основные питательные среды: мясо-пептонный бульон и мясо-пептонный агар. Специальные питательные среды применяются для выращивания тех микробов, которые не могут расти на основных средах. Например, кровяной агар и сахарный бульон для стрептококка, сывороточный агар для менингококка и гонококка. Элективные питательные среды применяются для выделения одного какого-либо вида микроорганизма из смеси различных бактерий. Данный вид бактерий растёт на этой среде быстрее и лучше других, опережая их в своем росте; а рост других бактерий задерживается. Например, свёрнутая сыворотка для палочки дифтерии, щелочная пептонная вода для холерного вибриона, желчный бульон для палочек брюшного тифа, солевые среды для стафилококка. Дифференциально-диагностические питательные среды применяются для отличия одних видов бактерий от других на основании их биохимических свойств. В этих средах в качестве основы применяют разнообразные органические и неорганические соединения: питательный бульон или 1% пептонную воду. К ним добавляют углеводы, спирты, мочевину и другие вещества; при расщеплении которых происходит сдвиг рН в кислую (углеводы, спирты, липиды) или щелочную (белки) сторону, что изменяет цвет индикатора, также входящего в состав среды.

Подробнее эти среды описаны в дополнительном материале к занятию 9 (тема: «Ферменты бактерий»).

Дифференциально-диагностические среды, их названия; для чего применяются? Что такое рост микробов, размножение микробов? Как размножаются бактерии? Фазы роста бактериальной культуры в жидкой питательной среде (начертить кривую). Размножение бактерий в непрерывно–проточной среде. Условия культивирования бактерий.

Дифференциально-диагностические среды делят на 4 основные группы:

  1. Среды, содержащие белки, дающие характерные изменения под действием бактериальных ферментов и токсинов (кровь, желатин, молоко и др.); их применяют для определения гемолитических или протеолитических свойств: кровяной агар (КА), среда с желатином, молоко, желточно-солевой агар (ЖСА).

  2. Среды, содержащие углеводы или многоатомные спирты и индикаторы: ферментативное расщепление субстрата приводит к сдвигу рН и изменению окраски индикатора. Например, среда Эндо, среда Левина, среда Плоскирева, среды Гисса, среда Олькеницкого.

  1. Среды для дифференциации микробов по редуцирующей способности. В эту группу входят среды с красителями, обесцвечивающимися при восстановлении, а также среды с нитратами для определения денитрифицирующей активности бактерий.

  2. Среды, включающие вещества, ассимилируемые только определённой группой бактерий. Наиболее распространёнными средами данной группы являются цитратный агар Симмонса и цитратная среда Козера.

Что такое культура бактерий, чистая культура, штамм?

Культура клеток - это клетки из органа животного или человека, которые живут и размножаются вне организма в питательном раство­ре (в среде 199 или в среде Хенкса)

Чи­стая культура - это культура микробов одного вида, полученная из од­ной колонии. В лабораториях для различных исследований применя­ют определенные известные штаммы микробов.

Штамм - это чистая культура микробов, полученная из определенного источника, в опре­деленное время, обладающая известными свойствами.

Особенности биологического окисления у микробов. Группы микробов по типу биологического окисления. Каковы различия между аэробным и анаэробным типом (основные этапы, ферменты, участие свободного кислорода, конечный акцептор водорода, продукты окисления). Перечислите патогенные анаэробы.

У микроорганизмов существует два типа биологического окис­ления: аэробный и анаэробный. При аэробном типе участвует кисло­род, и этот процесс называется дыханием в строгом смысле слова. При анаэробном типе биологического окисления освобождение энергии из органических молекул происходит без участия кислорода и называет­ся брожением.

Начальный этап анаэробного расщепления глюкозы с образова­нием пировиноградной кислоты (ПВК) происходит одинаково. Эта кислота является тем центральным пунктом, от которого расходятся пути дыхания и многих видов брожений.

При аэробном типе дыхания пировиноградная кислота вступает в цикл трикарбоновых кислот. Водород ПВК поступает в дыхательную цепь. Это цепь окислительных ферментов (цитохромы и цитохромоксидаза). По цепи цитохромов передается водород и присоединяется к активированному под действием цитохромоксидазы кислороду с об­разованием воды. Конечные продукты аэробного окисления глюкозы - диоксид углерода (углекислота) и вода. В процессе дыхания на одну молекулу глюкозы образуется 38 молекул АТФ.

При анаэробном типе биологического окисления энергия образу­ется в результате брожений. При спиртовом брожении ПВК превра­щается в конечном итоге в спирт и углекислоту. Конечным продуктом молочнокислого брожения является молочная кислота, маслянокислого брожения - масляная кислота. При процессах брожения на одну моле­кулу глюкозы образуется только 2 молекулы АТФ.

Микробную природу брожений впервые открыл и доказал Пастер. Изучая маслянокислое брожение, Пастер впервые столкнулся с возможностью жизни без кислорода, то есть с анаэробиозом. Он так­же установил явление, которое впоследствии было названо "эффектом Пастера": прекращение процесса брожения при широком доступе кис­лорода.

Анаэробиоз существует только среди прокариотов. Все микро­организмы по типу дыхания делятся на следующие группы: облигатные аэробы, облигатные анаэробы, факультативные анаэробы, микроаэрофилы.

Облигатные аэробы размножаются только при наличии свободно­го кислорода. К ним можно отнести микобактерии туберкулеза, хо­лерный вибрион, чудесную палочку. ,

Облигатные или строгие анаэробы получают энергию при от­сутствии доступа кислорода. Они имеют неполный набор окислитель­но-восстановительных ферментов, у них нет цитохромной системы, поэтому у них не происходит полного окисления субстрата (глюкозы) до конечных продуктов - СО2 и Н2О. Более того, в присутствии свобод­ного кислорода образуются токсические соединения: перекись водо­рода Н2О2 и свободный перекисный радикал кислорода О2. Аэробы при этом не погибают, так как продуцируют ферменты, разрушающие эти токсические соединения (супероксиддисмутазу и каталазу). Спорообразующие анаэробы в этих условиях прекращают размножение и превращаются в споры. Неспорообразующие анаэробы погибают даже при кратковременном контакте с кислородом.

К облигатным спорообразующим анаэробам относятся клостридии столбняка, ботулизма, анаэробной раневой инфекции; к неспорообразующим анаэробам - бактероиды, пептобактерии, бифидумбактерии.

Большинство патогенных бактерий - факультативные (условные) анаэробы, например, энтеробактерии. Они имеют полный набор фер­ментов и при широком доступе кислорода окисляют глюкозу до ко­нечных продуктов; при низком содержании кислорода они вызывают брожение.

Микроаэрофилы размножаются в присутствии небольших коли­честв кислорода. Например, кампилобактеры могут размножаться при 3-6% кислорода.

Что такое окислительно-восстановительный потенциал среды, какие микробы лучше растут при низких его значениях, какие - при более высоких?

Окислительно-восстановительный потенциал среды –

Анаэробы – лучше при низком потенциале среды, аэробы наоборот

Типы брожения. Что такое аэрация питательной среды, как она осуществляется?

Спиртовое, уксуснокис­лое, молочнокислое, маслянокислое, а также разложение целлюлозы (клетчатки). Микроорганизмы, вызывающие брожение, имеют про­мышленное значение.

Спиртовое брожение - распад углеводов с образованием этило­вого спирта и диоксида углерода - вызывают дрожжевые грибы. Этот вид брожения известен давно и используется при изготовлении спирт­ных напитков.

Уксуснокислые бактерии окисляют этиловый спирт в аэробных ус­ловиях до уксусной кислоты. Они используются в промышленности, но при попадании в вино или пиво могут приводить к их порче.

Молочнокислое брожение вызывают лактобактерии. Конечным продуктом процесса является молочная кислота, которая губительно действует на гнилостные микробы кишечника. Молочнокислые бакте­рии применяют для изготовления кисломолочных продуктов: просток­ваши, йогурта, ацидофилина. Препарат лактобактерии, применяемый для устранения дисбактериоза, содержит культуру живых молочно­кислых бактерий.

Маслянокислое брожение осуществляют анаэробные бактерии. Ко­нечным продуктом брожения является масляная кислота, образование которой вызывает порчу консервированных продуктов.

Аэрация - обогащение питательной среды стерильным воздухом или кислородом с целью увеличить выход биомассы при культивировании (обычно глубинном) аэробных микроорганизмов в жидкой питательной среде. Встряхивание, пропускание струи стерильного воздуха под давлением через среду.

Особенности культивирования анаэробных бактерий. Среды, методы и приборы, используемые для их культивирования.

Для культивирования анаэробов необходимо понизить окисли­тельно-восстановительный потенциал среды, создать анаэробиоз пу­тем удаления кислорода физическими, химическими или биологичес­кими методами.

К физическим методам можно отнести:

1) механическое удаление воздуха с помощью насоса из анаэ-ростата, в котором помещают чашки с посевами. Одновременно мож­но заменить воздух индифферентным газом: азотом, водородом, угле­кислым газом.

2) выращивание в среде, содержащей редуцирующие вещества. Сре­да Китта-Тароцци - это сахарный бульон с кусочками печени или мяса. Глюкоза и кусочки органов обладают редуцирующей способностью. Среду заливают сверху слоем вазелинового масла, чтобы преградить доступ кислорода воздуха.

3) Наиболее простой, но менее надежный способ - выращивание в глубине высокого столбика сахарного агара.

Химические методы заключаются в том, что чашки с посевами ана­эробов ставят в герметически закрытый эксикатор, куда помещают хи­мические вещества, например, пирогаллол и щелочь, реакция между которыми идет с поглощением кислорода.

Биологический метод основан на одновременном выращивании анаэробов и аэробов на плотных питательных средах в чашках Пет­ри, герметически закрытых после посева. Вначале кислород погло­щается растущими аэробами, а затем начинается рост анаэробов.

Выделение чистой культуры анаэробов начинают с накопления анаэробных бактерий путем посева на среду Китта-Тароцци. В даль­нейшем получают изолированные колонии одним из двух способов:

1) посев материала производят путем смешивания с расплавленным теплым сахарным агаром в стеклянных трубках. После застывания ага­ра в глубине его вырастают изолированные колонии, которые извле­кают путем распила трубки и пересевают на среду Китта-Тароцци (спо­соб Вейнберга);

2) посев материала производят на чашки с питательной средой и инкубируют в анаэростате. Выросшие на чашке изолированные ко­лонии пересевают на среду Китта-Тароцци (способ Цейсслера).

Среда Китта-Тароцци: на чём основано её действие, что входит в её состав, что делают со средой перед посевом и для чего?

Среда Китта-Тароцци. Содержит мясо-пептонный бульон, 0,5% глюкозы и 0,15% агара. На дно пробирки для адсорбции О2 помещают кусочки варёной печени или фарша слоем 1-1,5 см и заливают 6-7 мл среды. Среду перед посевом регенерируют (прогревают 15-20 мин. на водяной бане для удаления воздуха, а затем быстро охлаждают). После посева среду заливают вазелиновым маслом и помещают в термостат.

Рассказать поэтапно выделение чистой культуры микробов-аэробов.

Выделение чистых культур аэробов занимает, как правило, три дня и производится по следующей схеме:

1-й день - микроскопия мазка из исследуемого материала, ок­рашенного (обычно по Граму) - для предварительного ознакомления с микрофлорой, что может быть полезным в выборе питательной среды для посева. Затем посев материала на поверхность застывшего пита­тельного агара для получения изолированных колоний. Рассев можно произвести по методу Дригальского на три чашки Петри с питательной средой. Каплю материала наносят на первую чашку и распределяют шпателем по всей чашке. Затем этим же шпателем распределяют остав­шуюся на нем культуру на второй чашке и таким же образом - на тре­тьей. Наибольшее количество колоний вырастет на первой чашке, наи­меньшее - на третьей. В зависимости от того, сколько было микробных клеток в исследуемом материале, на одной из чашек вырастут изоли­рованные колонии.

Такого же результата можно достигнуть, произведя рассев на од­ной чашке. Для этого делят чашку на четыре сектора. Исследуемый материал засевают бактериологической петлей штрихами на первом секторе, затем, прокалив и остудив петлю, распределяют посев из пер­вого сектора во второй и таким же образом последовательно в тре­тий и четвертый сектор. Из отдельных микробных клеток после су­точного инкубирования в термостате образуются изолированные колонии.

2-й день - изучение колоний, выросших на чашках, описание их. Колонии могут быть прозрачными, полупрозрачными или непроз­рачными, они имеют различные размеры, округлые правильные или неправильные очертания, выпуклую или плоскую форму, гладкую или шероховатую поверхность, ровные или волнистые, изрезанные края. Они могут быть бесцветными или иметь белый, золотистый, красный, желтый цвет. На основании изучения этих характеристик выросшие колонии разделяются на группы. Затем из исследуемой группы отби­рают изолированную колонию, готовят мазок для микроскопического исследования с целью проверки однородности микробов в колонии. Из этой же колонии производят посев в пробирку со скошенным пита­тельным агаром.

3-й день - проверка чистоты культуры, выросшей на скошенном агаре путем микроскопии мазка. При однородности исследуемых бак­терий выделение чистой культуры можно считать законченным.

Рассказать поэтапно выделение чистой культуры микробов–анаэробов.

Выделение чистой культуры анаэробов начинают с накопления анаэробных бактерий путем посева на среду Китта-Тароцци. В даль­нейшем получают изолированные колонии одним из двух способов:

1) посев материала производят путем смешивания с расплавленным теплым сахарным агаром в стеклянных трубках. После застывания ага­ра в глубине его вырастают изолированные колонии, которые извле­кают путем распила трубки и пересевают на среду Китта-Тароцци (спо­соб Вейнберга);

2) посев материала производят на чашки с питательной средой и инкубируют в анаэростате. Выросшие на чашке изолированные ко­лонии пересевают на среду Китта-Тароцци (способ Цейсслера).

Что такое психрофилы, мезофилы, термофилы? Оптимальная температура для роста патогенных микробов.

Для психрофилов оптимальная температура для роста 10-15°С. ми­нимальная 0-5°С, максимальная 25-30°С. Большинство из них свободноживущие и паразиты холоднокровных животных, по есть и патогенные для человека, например, иерсинии, псевдомонады. Они разм­ножаются при температуре бытового холодильника и более вирулентны при низких температурах.

Мезофилы размножаются преимущественно в организме теплок­ровных животных и человека. Оптимальная температура для их роста 30-37°С, максимальная 43-45°С, минимальная 15-20°С. Большинство патогенных микроорганизмов относятся к мезофилам. В окружающей среде они обычно не размножаются, но могут сохраняться живыми.

Для термофилов оптимальная температура для роста 50-60°С, ми­нимальная равна 45°С максимальная 90°С. Термофильные бактерии живут в юрячей воде гейзеров. Они не размножаются в организме человека.

Как, по каким признакам проводится описание изолированных колоний бактерий на плотных питательных средах?

Для идентификации выделенных бактерий изучаются культураль-ные признаки, то есть характер роста на жидких и плотных пита­тельных средах. Например, стрептококки на сахарном бульоне образуют придонный и пристеночный осадок, на кровяном агаре - мелкие, точечные колонии; холерный вибрион образует пленку на поверхности щелочной пептонной воды, а на щелочном агаре - прозрачные коло­нии; палочка чумы на питательном агаре образует колонии в виде «кру­жевных платочков» с плотным центром и тонкими волнистыми края­ми, а в жидкой питательной среде - пленку на поверхности, а затем -нити, отходящие от нее в виде «сталактитов».

Что входит в понятие «культуральные свойства микробов»? Для чего их изучают?

Культуральные свойства данного вида микроорганизмов - это: 1) условия, необходимые для размножения, и 2) характер роста на пита­тельных средах. Культуральные свойства - это одна из характеристик, которые учитываются при идентификации (определения вида) микро­организмов.

Пигменты микробов, их характеристика: приведите примеры микробов, образующих пигменты, растворимые в воде, растворимые в органических растворителях и нерастворимые пигменты.

Некоторые виды микробов вырабатывают красящие вещества -пигменты. Если пигмент растворим в воде, то окрашенными предс­тавляются и колонии микробов, и питательная среда. Например, си­ний пигмент, выделяемый синегнойной палочкой (Pseudomonas aeruginosa), окрашивает среду в синий цвет. Пигменты, растворимые в орга­нических растворителях, но нерастворимые в воде, не окрашивают питательную среду. Такой пигмент красного цвета, так называемый продигиозан, растворимый в спирте, выделяет чудесная палочка (Serratia marcescens). К этой же группе относятся пигменты желтого, оранжевого, красного цвета, характерные для кокковой воздушной микрофлоры. У некоторых видов микробов пигменты настолько проч­но связаны с протоплазмой клетки, что не растворяются ни в воде, ни в органических растворителях. Среди патогенных бактерий такие пиг­менты золотистого, палевого, лимонно-желтого цвета образуют ста­филококки.

Цвет пигмента используется для определения вида бактерий.

Некоторые микроорганизмы в процессе метаболизма вырабатыва­ют ароматические вещества. Например, для синегнойной палочки ха­рактерен запах жасмина. Характерный запах сыров, сливочного мас­ла, особый "букет" вина объясняется жизнедеятельностью микробов, которые используются для производства этих продуктов.

Свечение (люминесценция) микробов происходит в результате ос­вобождения энергии при биологическом окислении субстрата. Свечение бывает тем интенсивнее, чем сильнее приток кислорода Светящиеся бактерии были названы фотобактериями. Они придают свечение че­шуе рыб в море, грибам, гниющим деревьям, пищевым продуктам, на поверхности которых размножаются. Свечение может наблюдаться при низких температурах, например, в холодильнике. Патогенных для че­ловека среди фотогенных бактерий не установлено.

Свечение пищевых продуктов, вызванное бактериями, не приво­дит к их порче, и даже может свидетельствовать о том. что в этих про­дуктах не происходит гниения, поскольку оно прекращается при разви­тии гнилостных микроорганизмов.

Определите понятия: асептика; антисептика, дезинфекция, стерилизация.

Асептика - комплекс мероприятий, направленных на предупреж­дение попадания микробов в рану, или в пробирку с питательной сре­дой, в ампулу с лекарственным средством и т.д.

Антисептика - способ обеззараживания ран, операционного поля, рук хирурга, а также воздействие на инфекцию в организме пациента с помощью химических веществ - антисептиков.

Дезинфекция - уничтожение патогенных микробов в окружающей среде и различных объектах с целью прервать путь передачи и распро­странения инфекционного заболевания. Для дезинфекции используют химические вещества, лучевые и другие воздействия.

Стерилизация - процесс, направленный на полное уничтожение всех микроорганизмов в каком-либо объекте. Для стерилизации используют физические, химические методы и их сочетание.

К физическим способам относятся: стерилизация высокой тем­пературой, УФ-облучением, ионизирующим излучением, ультразвуком, фильтрованием через бактериальные фильтры.

Перечислите методы стерилизации, применяемые в микробиологической практике и медицине. Охарактеризуйте каждый из этих методов: аппаратура, режим стерилизации (температура и время), стерилизуемые материалы, контроль успешной стерилизации.

Прокаливание на огне. Это надежный метод стерилизации, но он имеет ограниченное применение из-за порчи предметов. Таким спосо­бом стерилизуются бактериологические петли.

Стерилизация сухим жаром. Проводится в печи Пастера (сухожаровой шкаф) при температуре 160-170°С в течение 1-го часа. Этим способом стерилизуют лабораторную стеклянную посуду, пипетки, за­вернутые в бумагу, пробирки, закрытые ватными пробками. При тем­пературе выше 170°С начинается обугливание бумаги, ваты, марли.

Стерилизация паром под давлением (автоклавирование). Наиболее универсальный метод стерилизации. Проводится в автоклаве - водо-паровом стерилизаторе. Принцип действия автоклава основан на за­висимости температуры кипения воды от давления.

Автоклав представляет собой двустенный металлический котел с герметически закрывающейся крышкой. На дно автоклава наливают воду, в рабочую камеру помещают стерилизуемые предметы, закрыва­ют крышку, сначала не завинчивая ее герметически. Включают наг­ревание и доводят воду до кипения. Образующийся при этом пар вы­тесняет из рабочей камеры воздух, который выходит наружу через от­крытый выпускной кран. Когда весь воздух будет вытеснен, и из крана пойдет непрерывной струей пар, кран закрывают, крышку закрывают герметически. Доводят пар до нужного давления под контролем мано­метра. Температура пара зависит от давления: при нормальном ат­мосферном давлении стрелка манометра стоит на 0 атм. - температура пара 100°С, при 0,5 атм. - 112°С, при 1 атм. -121°С, при 1,5 атм. - 127°С, при 2 атм. - 134°С. По окончании стерилизации автоклав отключают, ждут, пока давление не снизится, выпускают постепенно пар и откры­вают крышку. Обычно при давлении 1 атм. в течение 20-40 минут сте­рилизуют простые питательные среды и растворы, не содержащие бел­ков и углеводов, перевязочный материал, белье. Стерилизуемые мате­риалы должны быть проницаемы для пара. При стерилизации матери­алов в больших объемах (хирургические материалы) время увеличива­ют до 2 часов. При давлении 2 атм. производят обеззараживание па­тологического материала и отработанных культур микробов.

Питательные среды, содержащие сахара, нельзя стерилизовать при 1 атм., так как они карамелизуются, поэтому их подвергают дробной стерилизации текучим паром, или автоклавированнию при 0,5 атм.

Для контроля режима стерилизации применяются биологический и физический методы. Биологичесжй метод основан на том, что од­новременно со стерилизуемым материалом помещают споры Bacillus stearothermophilus, которые погибают при 121°С за 15 минут. После проведения стерилизации споры не должны дать рост на питательной среде. Физический метод основан на применении веществ, имеющих определенную точку плавления, например, серу (119°С), бензойную кислоту (120°С). Запаянные трубки, содержащие вещество в смеси с сухим красителем (фуксин) помещают в автоклав вместе со стерилизу­емым материалом. Если температура в автоклаве достаточна, веще­ство расплавится и окрасится в цвет красителя.

Стерилизация текучим паром_проводится в аппарате Коха или в автоклаве при незавинченной крышке и открытом выпускном кране. Воду в аппарате нагревают до 100°С. Образующийся пар проходит через заложенный материал и стерилизует его. Однократная обработка при 100°С не убивает споры. Поэтому применяют дробный метод сте­рилизации - 3 дня подряд по 30 минут, в промежутках оставляя на сут­ки при комнатной температуре. Прогревание при 100°С вызывает теп­ловую активацию спор, вследствие чего они прорастают до следующе­го дня в вегетативные формы и погибают при втором и третьем про­гревании. Вследствие этого стерилизация текучим паром могут под­вергаться только питательные среды, т.к. для прорастания спор необ­ходимо наличие питательных веществ.

Для материалов, разрушающихся при 100°С (например, сыворот­ки, питательные среды, содержащие белок) применяют другой вид дроб­ной стерилизации - тиндализацию. Стерилизуемый материал прогревают на водяной бане при 56-60°С в течение 5-6 дней подряд - в первый день в течение 2 часов, в остальные дни по 1 часу.

Соседние файлы в предмете Микробиология