Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
охт / Курсач.docx
Скачиваний:
33
Добавлен:
11.01.2022
Размер:
539.24 Кб
Скачать
  1. Описание технологической схемы процесса

Основным аппаратом в синтезе метанола служит реактор — контактный аппарат, конструкция которого зависит, главным образом, от способа отвода тепла и принципа осуществления процесса синтеза. В современных технологических схемах ис­пользуются реакторы трех типов:

— трубчатые реакторы, в которых катализатор размещен в трубах, через которые проходит реакционная масса, охлаж­даемая водным конденсатом, кипящим в межтрубном простран­стве;

— адиабатические реакторы, с несколькими слоями ката­лизатора, в которых съем тепла и регулирование температуры обеспечивается подачей холодного газа между слоями катали­затора;

—реакторы, для синтеза в трехфазной системе, в которых тепло отводится за счет циркуляции жидкости через котел-ути­лизатор или с помощью встроенных в реактор теплообменни­ков.

Рис. 1. Схема производства метанола при давлении 5 МПа;

1, 10 – турбокомпрессоры; 2 – подогреватель природного газа; 3 – реактор гидрирования сернистых соединений; 4 – адсорбер; 5 – трубчатый конвертор; 6 – котел-утилизатор; 7, 11, 12 – теплообменники; 8, 14 – холодильники - конденсаторы; 9, 15 – сепараторы; 13 – колонна синтеза; 16 – сборник.

Природный газ сжимается турбокомпрессором 1 до давления 3 МПа, подогревается в подогревателе 2 за счет сжигания в межтрубном пространстве природного газа и направляется на сероочистку в аппараты 3 и 4, где последовательно осуществляется каталитическое гидрирование органических соединений серы и поглощение образующегося сероводорода адсорбентом на основе оксида цинка. После этого газ смешивается с водяным паром и диоксидом углерода в соотношении СН4 : Н2О : СО2 = 1 : 3,3 : 0,24. Смесь направляют в трубчатый конвертор 5, где на никелевом катализаторе происходит пароуглекислотная конверсия при 850-870 °С. Теплоту, необходимую для конверсии, получают в результате сжигания природного газа в специальных горелках.

Конвертированный газ поступает в котел-утилизатор 6, где охлаждается до 280–290 °С. Затем теплоту газа используют в теплообменнике 7 для подогрева питательной воды, направляемой в котел-утилизатор. Пройдя воздушный холодильник 8 и сепаратор 9, газ охлаждается до 35-40 °С.

Охлажденный конвертированный газ сжимают до 5 МПа в компрессоре 10, смешивают с циркуляционным газом и подают в теплообменники 11, 12, где он нагревается до 220–230 °С.

Нагретая газовая смесь поступает в колонну синтеза 13, температурный режим в которой регулируют с помощью холодных байпасов. Теплоту реакционной смеси используют в теплообменниках 11, 12 для подогрева поступающего в колонну газа.

Далее газовая смесь охлаждается в холодильнике-конденсаторе 14, сконденсировавшийся метанол-сырец отделяется в сепараторе 15 и поступает в сборник 16. Циркуляционный газ возвращают на синтез, продувочные и танковые газы передают на сжигание в трубчатую печь.

Вследствие снижения температуры синтеза при низком давлении процесс осуществляется в условиях, близких к равновесию, что позволяет увеличить производительность агрегата.

Рис. 2. Технологическая схема производства метанола в трехфазной системе: 1 — компрессор, 2 — циркуляционный компрессор, 3,9 — насосы, 4 • реактор кипящего слоя, 5,6 — теплообменники, 7 — холодильник-конденсатор, 8 — сепаратор, 10 — котел-утилизатор.

На рис. 2. приведена технологическая схема производства метанола по трехфазному методу на медь-цинковом катализа­торе из синтез-газа, полученного газификацией каменного угля, производительностью 650 тыс. т в год.

Очищенный от соединений серы синтез-газ сжимается в ком­прессоре 1 до давления 3—10 МПа, подогревается в теплообмен­нике 5 продуктами синтеза до 200— 280°С, смешивается с цир­куляционным газом и поступает в нижнюю часть реактора 4.' Образовавшаяся в реакторе парогазовая смесь, содержащая до 15% метанола, выходит из верхней части реактора, охлажда­ется последовательно в теплообменниках 5 и б и через холодиль­ник-конденсатор 7 поступает в сепаратор 8, в котором от жид­кости отделяется циркуляционный газ. Жидкая фаза разде­ляется в сепараторе на два слоя: углеводородный и метанольный. Жидкие углеводороды перекачиваются насосом 9 в реак тор, соединяясь с потоком углеводородов, проходящих через котел-утилизатор 10. Таким образом жидкая углеводородная фаза циркулирует через реактор снизу вверх, поддерживая ре­жим кипящего слоя тонкодисперсного катализатора в нем, и одновременно обеспечивая отвод реакционного тепла. Метанол-сырец из сепаратора 8 поступает на ректификацию или исполь­зуется непосредственно как топливо или добавка к топливу.

Разработанный в 70-х годах трехфазный синтез метанола ис­пользуется в основном, для производства энергетического про­дукта. В качестве жидкой фазы в нем применяются стабильные в условиях синтеза и не смешивающиеся с метанолом углеводо­родные фракции нефти, минеральные масла, полиалкилбензолы. К указанным выше преимуществам трехфазного синтеза метанола следует добавить простоту конструкции реактора, воз­можность замены катализатора в ходе процесса, более эффектив­ное использование теплового эффекта реакции. Вследствие это­го установки трехфазного синтеза более экономичны по сравне­нию с традиционными двухфазными как высокого так и низко­го давления. В табл. 12.2 приведены показатели работы устано­вок трех- и двухфазного процесса одинаковой производительно­сти 1800 т/сут.

Соседние файлы в папке охт