
- •Методика преподавания математики и практикум по решению задач
- •1.Дочисловая подготовка
- •2.Технология обучения счету
- •3.Методика изучения однозначных чисел
- •4.Технология ознакомления учащихся с принципом поразрядного счета в контексте “Двузначные числа”
- •5.Технология ознакомления учащихся с принципом поместного значения цифр в записи числа
- •6.Ознакомление учащихся с понятием “класс счетных единиц”. Технология обучения чтению и записи многозначных чисел.
- •7.Изучение свойств сложения и их применение в практике вычислений
- •8.Изучение свойств умножения и их применение в практике вычислений.
- •9.Изучение свойств деления и их применение в практике вычислений
- •10.Изучение взаимосвязи сложения и вычитания, правил нахождения неизвестных компонентов этих действий
- •11.Изучение взаимосвязи умножения и деления, правил нахождения неизвестных компонентов этих действий
- •12.Методика изучения сложения и вычитания в пределах десятка
- •13.Методика изучения приемов сложения и вычитания однозначных чисел с переходом через десяток
- •15.Методика изучения приемов письменного сложения и вычитания
- •16.Методика изучения табличных случаев умножения и деления
- •17.Методика изучения устных внетабличных случаев умножения и деления
- •18.Эмпирические и логические методы изучения деления с остатком. Применение полученных знаний в последующих концентрах
- •19.Методика изучения приемов письменного умножения
- •20.Методика изучения приемов письменного деления
- •21.Система арифметических задач в начальном курсе математики
- •22.Моделирование содержания простых задач и зависимостей между данными и искомыми. Способы решения арифметических задач
- •23.Методика обучения решению простых задач, раскрывающих смысл арифметических действий
- •24.Методика обучения решению простых задач с разностными отношениями между числами
- •25.Методика обучения решению простых задач с кратными отношениями между числами
- •26.Методика обучения решению простых задач на нахождение неизвестных компонентов арифметических действий
- •27.Методика ознакомления с составной задачей
- •28.Способы проверки арифметических задач.Формы творческой работы
- •29.Методика обучения решению составных задач с пропорционально зависимыми величинами
- •30.Методика обучения решению составных задач на нахождение четвертого пропорционального
- •31. Методика обучения решению составных задач на пропорциональное деление
- •32.Методика обучения решению составных задач на нахождение неизвестного по двум разностям
- •33.Задачи на движение в начальном курсе математики
- •34. Методика обучения решению задач на одновременное встречное движение
- •35. Методика обучения решению задач на движение в одном направлении
- •36.Методика формирования представлений о длине отрезка
- •37.Методика формирования представлений о массе и емкости
- •38.Методика формирования у младших школьников временных представлений. Изучение мер времени
- •39.Методика формирования представлений о площади фигуры
- •40.Числовые равенства и неравенства как высказывание. Технология формирования у учащихся этих понятий
- •41.Методика изучения правил порядка выполнения действий в математических выражениях
- •42.Уравнения в начальном курсе математики и способы их решения. Технология формирования у учащихся умения решать уравнения.
- •43.Методика изучения алгебраических тождеств, обобщающих представления учащихся о свойствах арифметических действий
- •44.Методика формирования понятий “круг” и “окружность”
- •45. Методика формирования понятий “прямоугольник” и “квадрат”
- •46. Методика формирования понятий “угол” и “прямой угол”
- •47.Методика формирования у учащихся представлений о ломаной линии и периметре многоугольника
- •48. Методика формирования понятия “многоугольник”
- •49. Методика формирования у учащихся представлений о скорости сближения и скорости удаления
- •50. Методика формирования понятий “доля”, “дробь” и обучение учащихся решению задач на нахождение доли (дроби) числа и числа по его доли
32.Методика обучения решению составных задач на нахождение неизвестного по двум разностям
Существенными признаками задач с пропорц величинами являются: в них говорится о трех величинах, одна из низ остается постоянной, две другие явл переменными, переменные величины находятся в прямо или обратно пропорц зависимости. Организация обучения реешнию задач с пропорц величинами: подготов работа - ознакомл со способом решения (открытие способа решения, анализ выполн реш, применение) – формир умений. Содерж подгот работы: подготовка к реш задач с пропор величинами предполагает: раскрытие конкретного смысла величин. Могут быть использ методы: экскурсия, демонстрация, практич работа учащ, наблюдение; выявление взаомооотнош между величинами одной группы (цена, колич, стоимость), скорость, время, растояние и др. Решение соотвеств типов задач (простых); осмысление существенных признаков прямо и обратно пропорц зависимости между двумя величинами одной группы когда третья величина остается постоянной. Вводить первые заадчи нового типа можно по-разному: предложить в готовом виде, получение новой задачи из раннее известных, приобраз реш задачи в задачу нового типа, составл задачи нового типа по чертежу и сюжету, составл задачи нов типа по краткой записи и сюжету, реш готов задачи нового типа. Организация процесса решения задач с пропорц зависим величи: 1) восприятие и осмысление содерж задачи. Краткую запись задач с пропорц завис лучше выполн в виде таблиц (к1, к, ок). На этапе осмысл и поиска план реш может быть полезным графич моделирование, 2) поиск плана решения. Использ методы анализа, синтеза, аналитика-синтетич. Для задач на нахожд 4-го пропорц можно использ как синтез так и анализ. К открытию способа решения задач на пропорц реш и на нахожд неизв по двум разностям можно подвести также использ метод сведения задач этих типов к задачам на нах 4-го пропорц. 3) выполнение решения. Запись реешния выполн по действиям с пояснениями или вопросами: а) для нах 4-го пропорц предпочтительнее записывать реешние в виде числового выражения, потому что это позволяет направить внимание учащ на зависимости между величинами и на способ решения без отвлечения на промежуточные вычисления 4) проверка. Для задч с пропорц велич использ все виды проверки и творч работы: реш зад другим способом. Для задач на нах 4-го пропорц необход использ такой способ реш как прикидка ответа. Формы творческой работы: реешние задачи другим способом, составление обратной задачи, составление аналогичной задачи (с другим сюжетом, другими числовыми данными но с той же матем структурой), преобразование задачи: изменение числовых данных или опорынх слов в тексте задачи и выяснение того, как эти изменения повлияют на ход решения, на результат, на ответ; целенаправленные изменения вопроса заадсчи; расширение задачи путем введения дополн данных или изменен вопроса, осследов выполненного решения (при каких условиях ответ был бы больше, ответ был бы меньше. Что помогло мне решить заадчу как я догадался как решать задачу. Обобщение способа решения типовых задач достигается путем: реешния задач с пеми же величинами но другими числовыми данными, решение аналогич задач но с другими величинами, преобразов задач одного типа в задачи другого типа, составление задач учащ аналогич, обратных, по решению, по вопросу.
Задача на нахождение неизвестного по двум разностям включает три величины, связанные пропорциональной зависимостью, из них две переменные и одна или больше постоянных, причем даны два или более значений одной переменной и разность соответствующих значений другой переменной, а сами значения этой переменной являются искомыми.
Применительно к каждой тройке величин, связанных пропорциональной зависимостью, можно выделить 6 видов задач на нахождение неизвестного по двум разностям, четыре из которых с прямо пропорциональной зависимостью, а две с обратно пропорциональной зависимостью. Таким образом, классификацию задач на нахождение неизвестного по двум разностям возможно тоже отразить в таблице (см. Приложение 7). Способ решения - арифметический (нахождение значения постоянной величины через вычисление отношения заданной разности значений величин к разности значений двух данных величин, а затем вычисление значений каждой искомой величины) и алгебраический (уравнением). Для решения задачи удобно записывать данные условия в виде таблицы. Этапы обучения решению задач на нахождение неизвестного по двум разностям - подготовительный, ознакомительный, закрепление. Подготовкой к решению задач на нахождение неизвестного по двум разностям является твердое умение школьников решать простые задачи на установление соответствия между двумя разностями и простых задач с различными группами пропорциональных величин. При ознакомлении с задачами на нахождение неизвестного по двум разностям следует учитывать опыт учащихся, полученный в процессе решения задач на пропорциональное деление. Задачи нового типа могут быть получены из решенных задач на пропорциональное деление. Сначала рассматривают задачи на нахождение неизвестного по двум разностям первого вида с различными группами пропорциональных величин. При этом обязательна проверка решения способом установления соответствия между искомыми, полученными в ответе и данными из условия задачи. После этого вводятся задачи второго вида. Задачи других видов в начальном курсе математики обычно не рассматриваются. В процессе закрепления школьникам предлагают к решению задачи 1-2 видов с различными группами пропорциональных величин и упражнения творческого характера на преобразование условия задач.
Задачи на нахождение неизвестных по двум разностям включают две переменные и одну или несколько постоянных величин, причём даны два значения одной переменной и разность соответствующих значений другой переменной, а сами значения этой переменной являются искомыми. По отношению к каждой тройке величин, находящихся в пропорциональной зависимости, можно выделить шесть видов задач на нахождение неизвестных по двум разностям [1].
Таблица 3
Вид задачи |
Величины |
Задача |
||
Цена |
Количество |
Стоимость |
||
I |
Постоянная |
Даны два значения. |
Дана разность значений, соответст. количеству. Найти каждое значение. |
Купили по одинаковой цене 5 м шелка и 3 м полотна. За шелк заплатили на 240 р. больше, чем за полотно. Сколько заплатили за шелк и полотно в отдельности? |
II |
Постоянная |
Дана разность значений, соответст. стоимости. Найти каждое значение. |
Даны два значения. |
Купили по одинаковой цене шелк и полотно. За шелк заплатили 600 р., за полотно 360 р. Шелка было на 2 м больше, чем полотна. Сколько купили метров шелка и полотна в отдельности? |
Задача. Купили по одинаковой цене 14 м полотна и 10 м шерсти. За всё полотно уплатили на 280 р. больше, чем за всю шерсть. Сколько заплатили за полотно и шерсть в отдельности?
Задачи этого типа представляют определённую трудность для детей в связи с тем, что стоимость и количество заданы в виде разностей: купили больше и заплатили больше. В связи с этим работу над задачами данного типа нужно построить так, чтобы дети осознали, что (на примере данной задачи) за полотно, купленное сверх 10 м заплатили 280 р. В связи с этим до формального разбора при поиске решения задачи на этапе ознакомления целесообразно выполнить разбор по существу, позволяющий развязать этот «трудный узел» задачи. Приведём полное рассуждение ученика при решении задачи данного типа, но прежде выполним разбор по существу, который осуществляется по вопросам учителя.
После выделения условия, требования задачи и выполнения краткой записи задачи в виде таблицы, учитель ставит вопросы:
Объекты задачи |
Цена |
Количество |
Стоимость |
Полотно Шерсть |
Одинаковая |
14 м 10 м |
? р., на 280 р. б. ? р. |
- За какое количество полотна уплатили столько же, сколько за всю шерсть? ( За 10 м.)
- Сколько уплатили за полотно, купленное сверх 10 м? (280 р.)
- Если мы будем знать количество полотна, купленного сверх 10м и знаем его стоимость, то, что сможем узнать по этим данным? (Цену 1 м полотна или шерсти.)
Далее выполняется формальный разбор от числовых данных.
4) Знаю, что купили 14 м полотна и 10м шерсти.
5) Могу узнать, сколько полотна купили за 280 р.
6) Действием вычитания.
4а) Знаю стоимость полотна (280 р.) и буду знать количество, за которое уплатили 280 р.
5а) Могу узнать цену полотна.
6а) Действием деления.
4б) Буду знать цену полотна и знаю его количество.
5б) Могу узнать стоимость полотна.
6б) Действием умножения.
4в) Буду знать стоимость полотна и знаю, что за полотно заплатили на 280 р. больше, чем за шерсть. Значит, за шерсть заплатили на 280 р. меньше.
5в) Могу узнать стоимость шерсти.
6в) Действием вычитания.
7. Составляю план решения: сначала действием вычитания узнаю, за какое количество полотна уплатили 280 р., затем действием деления узнаю цену полотна или шерсти, потом действием умножения узнаю стоимость полотна, затем действием вычитания узнаю стоимость шерсти.
8. Запишу решение по действиям с полным пояснением:
1) 14-10=4(м)- за столько полотна заплатили 280 р.;
2) 280:4=70(р.) - цена полотна (шерсти);
3) 70•14=980(р.) - стоимость полотна;
4) 980-280=700 (р.) - стоимость шерсти.
Ответ: 980 р. и 700 р.
На основе анализа содержания задачи и деятельности по её решению можно увидеть, что необходимые знания, умения и навыки у детей уже сформированы (знания связи между величинами цена, количество, стоимость и умение находить одну из них по двум значениям других величин) в процессе решения задач на нахождение четвёртого пропорционального и на пропорциональное деление. Однако в задачах данного типа дано не значение одной из переменных величин, а разность двух её значений, что и составляет проблему задачи (нужно найти цену, имея не значения стоимости и количества, а значения разности стоимостей и разности количеств).
В связи с этим на подготовительном этапе к введению задач данного типа необходимо предусмотреть специальные задания, с помощью которых раскрывается основная проблема задачи:
1) Ученик купил по одинаковой цене 9 тетрадей в клетку и 5 тетрадей в линейку. Каких тетрадей ученик купил больше? За какие тетради он уплатил денег больше?
Ученик купил по одинаковой цене тетрадей в клетку на 4 больше, чем тетрадей в линейку, и уплатил за них на 16 р. больше, чем за тетради в линейку. Сколько стоила одна тетрадь? К первой задаче ученики выполняют чертёж, затем отвечают на поставленные вопросы (Ученик купил тетрадей в клетку на 4 тетради больше, чем в линейку; за тетради в клетку он уплатил больше, потому что он купил их больше, а цена одинаковая.). Далее выясняется, за сколько тетрадей в клетку он уплатил столько же, сколько за все тетради в линейку.
К.
9 т.
Л. 5 т.
Учитель предлагает прочитать вторую задачу и, обращаясь к тому же чертежу, проводит беседу:
- Как вы понимаете выражение «тетрадей в клетку купил на 4 больше, чем тетрадей в линейку»(тетрадей в клетку столько же, сколько в линейку и ещё 4). Покажите это на чертеже.
- Что значит «уплатил за тетради в клетку на 16 р. больше»? (Уплатил за тетради в клетку столько же, сколько за тетради в линейку, и ещё 16 р.) Покажите это на чертеже.
- За сколько тетрадей ученик уплатил 16 р.? (За 4 тетради.)
- Значением какой величины является 16 р.? (16 р, - значение стоимости.)
- Значением какой величины является 4 т.? (4 тетради - значение количества.)
- Значит, нам известны значения двух величин - стоимости и количества - и знаем, что цена одинаковая. Что можно найти по этим данным? (Цену.) Каким действием? Учитель может предложить аналогичные задания из учебника, а также составленные им с другими величинами.
Ознакомление с решением задач на нахождение неизвестных по двум разностям можно выполнить разными путями: можно сначала составить задачу на нахождение неизвестных по двум разностям, преобразовав её из задачи на нахождение четвёртого пропорционального, а можно сразу предложить готовую задачу. В том и другом случае работа над задачей ведётся по одному и тому же плану: выделение условия, требования задачи, её иллюстрации в виде краткой записи (в виде таблицы) и чертежа, затем разбор по существу, формальный разбор и т.д. (см. выше).
На этапе закрепления умения решать задачи на нахождение неизвестных по двум разностям можно использовать задания аналогичные тем, которые предлагались при решении задач на пропорциональное деление. После введения задач на нахождение неизвестных по двум разностям второго вида по аналогичной методике следует провести работу по сравнению задач этих двух видов и сравнению их решений. Полезно также выполнить задания по сравнению задач на пропорциональное деление и задач с соответствующими величинами на нахождение неизвестных по двум разностям.