
- •Строение и функции клеточных мембран.
- •Виды активного и пассивного транспорта веществ через клеточную мембрану.
- •Строение, свойства и функции ионных каналов клеточной мембраны.
- •Потенциал покоя, его происхождение и ионные механизмы.
- •7. Фазовые изменения возбудимости клеток при генерации потенциала действия.
- •Законы раздражения возбудимых тканей: закон силы, закон длительности, закон скорости нарастания раздражения.
- •Законы действия постоянного тока на возбудимые ткани.
- •Критерий возбудимости (порог раздражения, хронаксия, лабильность).
- •4. По физиологической роли:
- •5. По количеству и характеру отростков:
- •Механизм возбуждения нейронов. Методы исследования.
- •13. Проведение возбуждения в немиелинизированных и миелинизированных нервных волокнах.
- •14. Функциональная классификация нервных волокон, скорость проведения возбуждения в них.
- •15. Закон анатомической и функциональной целостности нервного волокна.
- •16. Парабиоз по н.Е. Введенскому. Фазы парабиоза. Практическое применение парабиоза в медицине.
- •17. Закон двустороннего проведения возбуждения по нервному волокну.
- •18. Закон изолированного проведения возбуждения по нервным волокнам. Его значение для координированной деятельности организма.
- •19. Физиологические свойства и функции поперечно-полосатых мышечных клеток.
- •20. Механизм сокращения поперечно-полосатых мышечных клеток.
- •21. Одиночное сокращение скелетных мышц, его фазы.
- •22. Тетаническое сокращение скелетных мышц. Зубчатый и гладкий тетанус мышц.
- •23. Работа, мощность и сила мышц. Динамометрия.
- •24. Физиологические свойства и функции гладкомышечных клеток.
- •25. Виды хеморецепторов мембраны гладкомышечных клеток.
- •26. Общий план строения синапсов.
- •27. Классификация синапсов.
- •28. Механизм проведения возбуждения в электрических синапсах.
- •29. Механизм проведения возбуждения в химических синапсах нервной системы.
- •30. Постсинаптические потенциалы в нервных синапсах (впсп, тпсп), их природа.
- •31. Механизм проведения возбуждения в нервно-мышечных синапсах.
- •33. Потенциал концевой пластинки в нервно-мышечных синапсах (пкп), его природа.
- •34. Торможение в нервной системе. Виды торможения.
- •35. Природа пре- и постсинаптического торможения.
- •36. Природа возвратного и пессимального торможения.
- •37. Одностороннее проведение возбуждения
- •38. Задержка проведения возбуждения
- •39. Иррадиация возбуждения
- •40. Временная суммация возбуждения
- •41. Пространственная суммация возбуждения
- •42. Тонус
- •43. Утомляемость
- •44. Пластичность
- •45. Конвергенция возбуждений
- •46. Окклюзия возбуждений
- •47. Реципрокная иннервация
- •48. Доминанта
30. Постсинаптические потенциалы в нервных синапсах (впсп, тпсп), их природа.
В результате открывания каналов изменяется потенциал субсинаптической мембраны. Такое изменение называется постсинаптическим потенциалом.
В ЦНС возбуждающими являются холин-, адрен-, дофамин-, серотонинергические синапсы и некоторые другие. При взаимодействии их медиаторов с соответствующими рецепторами, открываются хемозависимые натриевые каналы. Ионы натрия входят в клетку через субсинаптическую мембрану. Происходит ее местная или распространяющаяся деполяризация. Эта деполяризация называется возбуждающим постсинаптическим потенциалом (ВПСП).
Тормозными являются глицин- и ГАМК-ергические синапсы. При связывании медиатора с хеморецепторами, активируются калиевые или хлорные хемозависимые каналы. В результате ионы калия выходят из клетки через мембрану.
Ионы хлора входят через нее. Возникает только местная гиперполяризация субсинаптической мембраны. Она называется тормозным постсинаптическим потенциалом (ТПСП).
Величина ВПСП и ТПСП определяется количеством квантов медиатора, выделившихся из терминали, а, следовательно, частотой нервных импульсов. Т.е. синаптическая передача не подчиняется закону "все или ничего". Если количество выделившегося возбуждающего медиатора достаточно велико, то в субсинаптической мембране может генерироваться распространяющийся ПД. ТПСП, независимо от количества медиатора не распространяется за пределы субсинаптической мембраны.
31. Механизм проведения возбуждения в нервно-мышечных синапсах.
Нервно-мышечные синапсы обеспечивают проведение возбуждения с нервного волокна на мышечное благодаря медиатору ацетилхолину, который при возбуждении нервного окончания переходит в синаптическую щель и действует на концевую пластинку мышечного волокна. В пресинаптической терминали образуется и скапливается в виде пузырьков ацетилхолин. При возбуждении электрическим импульсом, идущим по аксону, пресинаптической части синапса ее мембрана становится проницаемой для ацетилхолина.
Эта проницаемость возможна благодаря тому, что в результате деполяризации пресинаптической мембраны открываются ее кальциевые каналы. Ион Са2+ входит в пресинаптическую часть синапса из синаптической щели. Ацетилхолин высвобождается и проникает в синаптическую щель. Здесь он взаимодействует со своими рецепторами постсинаптической мембраны, принадлежащей мышечному волокну. Рецепторы, возбуждаясь, открывают белковый канал, встроенный в липидный слой мембраны. Через открытый канал внутрь мышечной клетки проникают ионы Na+, что приводит к деполяризации мембраны мышечной клетки, в результате развивается так называемый потенциал концевой пластинки (ПКП). Он вызывает генерацию потенциала действия мышечного волокна.
Нервно-мышечный синапс передает возбуждение в одном направлении: от нервного окончания к постсинаптической мембране мышечного волокна, что обусловлено наличием химического звена в механизме нервно-мышечной передачи.
32. Роль Ca2+ в механизме синаптического процесса.
Главную роль для процесса выбрасывания медиатора в синаптическую щель играет входящий ток Са2+. Деполяризация окончания лишь открывает кальциевые каналы. Ионы Са2+ служат здесь в качестве вещества-посредника (вторичного мессенджера), которое запускает механизм слияния везикул с пресинаптической мембраной. Повышение концентрации экстрацеллюлярного Са2+ повышает входящий ток ионов Са2+, что увеличивает освобождение медиатора. Искусственное повышение концентрации экстрацеллюлярного Mg2+ посредством замещения им ионов Са2+ ведет к снижению входящего тока Са2+ и тем самым уменьшению освобождения трансмиттера.
Ионы кальция активируют фосфорилирование синаптосина, что ослабляет связь везикулы с цитоскелетом, и везикула перемещается вдоль микротрубочек на позицию у активной зоны.