Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
геолог и я.docx
Скачиваний:
18
Добавлен:
06.07.2021
Размер:
1.81 Mб
Скачать

12.Подземные воды, их значение. Классификация по физическим свойствам, химическому составу. Виды подземных вод по условиям залегания, характеристика каждого вида.

Все воды, находящиеся в толще горных пород в твердом, жидком или газообразном состоянии, называются подземными

Поры, трещины, полости различных размеров в породах ЗК полностью или частично заполнены гравитационной водой, перемещающейся под действием разности напоров в сторону их уменьшения. Движение свободной (подземной) воды в условиях полного заполнения пор или трещин пород называется фильтрацией. Слой или несколько слоев пород, содержащих воду, образуют водоносный горизонт. Для него выделяют области питания, распространения и разгрузки. ПВ имеют большое значение. Они широко используются для водоснабжения, в различных областях промышленности, энергетики, медицины и др. Не менее важно, что ПВ влияют на все геологические процессы, в том числе опасные. Примером служат прорывы ПВ и плывунов в котлованы и другие выработки, оползни, пучение при промерзании, наледи и др. Охрана ПВ от истощения и загрязнения – важнейшая задача экологии.

К основным физическим свойствам относятся температура, цвет, прозрачность, мутность, вкус и запах.

Показателями химического состава являются:

1. Водородный показатель pH; при pH = 7 вода нейтральная, при pH < 7 кислая и при pH >7 щелочная.

2. Общая минерализация воды, оцениваемая по сухому остатку после выпаривания. Выделяют воды пресные (сухой остаток меньше 1 г/л), солоноватые (1…10), соленые (10…50) и рассолы при большем содержании.

3. Содержание катионов и анионов. По катионному составу различают воды кальциевые, магниевые и натриевые; по анионному – гидрокарбонатные, сульфатные, хлоридные.

4.Содержание сероводорода, углекислоты и других газов.

Анализ химического состава позволяет установить вид и степень агрессивности ПВ по отношению к строительным конструкциям, а также жесткость воды. В изменении химического состава ПВ установлена зональность по распространению в плане и по глубине: с севера на юг и сверху вниз состав меняется от пресных гидрокарбонатно-кальциевых к сульфатным и наконец, хлоридным. Исключением являются азональные воды – болотные, речных долин, карстовые. По характеру заполняемого водой пространства выделяют поровые, трещинные и карстовые подземные воды.

По условиям залегания выделяют следующие основные виды ПВ: верховодка, грунтовые, межпластовые.

Верховодкой называются временные скопления ПВ в зоне аэрации (рис.5.1), приуроченные к линзам и прослойкам малопроницаемых пород в общей водопроницаемой толще. Питание за счет атмосферных осадков. Возможно образование куполов верховодки в лессах при значительных утечках из сетей водоснабжения и водоотведения. В сухой период верховодка может полностью исчезать. Воды ненапорные, легко загрязняются с поверхности. Верховодка может вызвать неожиданное затопление котлованов, подвалов зданий, хотя в период изысканий она могла и отсутствовать.

Грунтовые воды – постоянный и значительный по площади горизонт ПВ, залегающий на первом от поверхности грунта водоупоре. Характеризуются следующими свойствами:

- питание за счет атмосферных осадков, иногда также за счет поверхностных вод;

- области питания и распространения совпадают;

- воды ненапорные;

- связь с поверхностными водами;

- легкая загрязняемость.

Обобщая последние свойства, можно заметить, что для грунтовых вод характерна изменчивость их режима – положения зеркала или уровня (УГВ), направления и скорости движения, химического состава, температуры и других физических свойств. УГВ может меняться в зависимости от многих природных и техногенных факторов: метеорологических, гидрологических, тектонических, техногенных. Действие первых двух очевидно. Тектонические движения в виде длительных поднятий приводят к углублению эрозионных врезов (овраги, лога, русла рек) и следовательно, к понижению УГВ. Деятельность человека может приводить как к повышению УГВ (создание водохранилищ, утечки из инженерных сетей и др.), так и к понижению – при осушении болот, длительных откачках и т.д. Процесс поднятия УГВ называется подтоплением. Грунтовые воды широко используются для водоснабжения.

Межпластовые подземные воды – это более глубокие водоносные горизонты между водоупорами. В редких случаях они бывают ненапорными, но обычно обладают напором. Напорные межпластовые воды называются артезианскими. Геологические структуры синклинального типа, содержащие несколько водоносных горизонтов и занимающие большие площади, называются артезианскими бассейнами. Слой или слои ГП, содержащие в порах и (или) трещинах свободную воду, называются водоносным горизонтом. Поверхность, ограничивающая ненапорный водоносный горизонт сверху, называется зеркало; при наклонном положении его подземные воды образуют поток. Нижней границей водоносного горизонта является водонепроницаемый слой (водоупор); обычно это глинистая или массивная скальная порода. Каждый горизонт характеризуется областями питания, распространения и разгрузки или дренирования (для артезианских вод последняя может отсутствовать).

ПВ имеют большое значение. Они широко используются для водоснабжения, в различных областях промышленности, энергетики, медицины и др. Не менее важно, что ПВ влияют на все геологические процессы, в том числе опасные. Примером служат прорывы ПВ и плывунов в котлованы и другие выработки, оползни, пучение при промерзании, наледи и др. Охрана ПВ от истощения и загрязнения – важнейшая задача экологии.

13.Закономерности движения подземных вод. Закон фильтрации, коэффициент фильтрации: смысл, область использования, примерные значения. Определение расхода потока и притока к водозабором. Движение подземных вод.

Основной закономерностью является закон Дарси, который можно записать также в объемной форме:

Q = k*A*I.(1)

С использованием зависимости (1) решаются разнообразные задачи – определение расхода потока, дебита скважин, притока воды в котлованы и к водозаборам и др.

Например, определим расход потока Q, т.е. объем воды, переносимый им в единицу времени. Пусть вода фильтрует на расстояние L в слое шириной В (см. рис. 4.1). Подставляя в формулу для Q выражения A = (H + h)B/2 и I = (H – -h)/L, получаем нужную формулу:

Q = k*(H^2 – h^2)B/2L.(2)

При решении практических задач используют удельный расход – расход в единицу времени на единицу ширины потока, то есть Q1= k (H^2– h^2)/2L.

Рассмотрим определение притока к водозаборам. Они могут быть горизонтальными (канава, водосборная галерея) и вертикальными (скважина, колодец). Если водозабор вскрывает водоносный слой на всю его мощность, он называется совершенным; в противном случае – несовершенным.

Откачка воды сопровождается понижением уровня воды в скважине, распространяющимся на некоторое расстояние – радиус влияния R. Вокруг скважины образуется депрессионная воронка.

Примерные значения радиуса влияния: для гравия 1км, крупного песка 0,5 км, мелкого 100…200м, для суглинка 50 м.

Определим приток к совершенному горизонтальному водозабору – канаве, пройденной вдоль потока, с шириной 2а и длиной L (рис. 5.3).Рассматриваем установившийся режим, когда с каждой стороны поток фильтрует через поперечное сечение A = y L при градиенте напора I = dy/dx. Подставляя эти выражения в формулу (1), разделяя переменные, интегрируя и разрешая относительно q, получаем:

Q = k L (H^2– h^2)/ (R – a).

Поскольку a<<R, поправка на полуширину практического значения не имеет и можно принять

Q = k L (H^2– h^2)/ R и соответственно Q1 = k (H^2– h^2)/R.

В таком виде формула непосредственно следует из (2) при замене B на L и удвоении притока.

Точно также получается решение для вертикального водозабора – скважины диаметром 2а. Согласно схеме на рис.5.3, в этом случае площадь будет A = 2π xy. Проводя далее решение аналогично предыдущему, получаем формулу Дюпюи:

Q = πk(H^2– h^2)/(lnR – lna). Для напорных подземных вод порядок вывода формул расхода

аналогичен.

Рис. 5.3. Схема к определению притока к горизонтальному водозабору:

1 – УГВ; 2 – кривая депрессии; 3 - водоупор

Подземные воды находятся в постоянном движении. Подземные воды передвигаются в основном путем инфильтрации и фильтрации.

Под инфильтрацией понимают движение воды при частичном заполнении пор воздухом либо водяными парами.

При фильтрации движение воды происходит при полном заполнении пор (трещин) водой. Масса этой движущей воды создает фильтрационный поток.

Фильтрационные потоки различают по характеру движения (установившийся и неустановившийся), гидравлическому состоянию (безнапорные, напорные и напорно-безнапорные). Движение потоков в основном ламинарное (параллельным) , в крупных трещинах и пустотах может быть турбулентным (завихряющемся). В плане фильтрационные потоки можно рассматривать как плоские и радиальные (сходящиеся (например к колодцу) и расходящиеся).

Гравитационная вода заполняет открытые поры и трещины в грунтах, перемещаясь под действием силы тяжести. Для большинства грунтов закон этого движения, или фильтрации воды, имеет вид:

V = Q/A = k I,

где V – скорость фильтрации (фиктивная), м сутки;

Q – расход воды в единицу времени, м3/с;

А – площадь поперечного сечения;

I = (H – h)/L – гидравлический градиент, т.е. разность напоров на единицу пути фильтрации (рис.4.1);

k – коэффициент фильтрации, т.е. скорость фильтрации при единичном градиенте.

Коэффициент фильтрации характеризует водопроницаемость грунта и изменяется в широких пределах. Определяется экспериментально в полевых и лабораторных условиях. Примерные значения составляют (м/сутки): суглинки меньше 0,05; супеси 0,05…0,5; пески от пылеватого до крупного 0,5…50; гравий, галечник 50…500. Глины с коэффициентом фильтрации менее 0,001 можно считать практически водонепроницаемыми.

Соседние файлы в предмете Инженерная геология