- •Передаточные функции аналоговых фильтров.
- •Описание rc-фильтров.
- •Сравнение пассивных фильтров с другими видами фильтров.
- •Передаточные функции аналоговых фильтров.
- •Описание lc-фильтров.
- •Сравнение пассивных фильтров с другими видами фильтров.
- •3. Описание и классификация активных фильтров. Фильтр нижних частот. Описание и классификация активных фильтров.
- •Фильтр нижних частот.
- •4. Описание и классификация активных фильтров. Фильтр верхних частот. Описание и классификация активных фильтров.
- •Фильтр верхних частот.
- •5. Описание и классификация активных фильтров. Полосовые фильтры. Описание и классификация активных фильтров.
- •Полосовые фильтры.
- •6. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Генератор на основе моста Вина. Генераторы гармонических сигналов. Теоретические сведения.
- •Принцип работы.
- •Генератор на основе моста Вина.
- •7. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Генератор на основе сдвига фаз с одним оу. Генераторы гармонических сигналов. Теоретические сведения.
- •Принцип работы.
- •Генератор на основе сдвига фаз с одним оу.
- •8. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Буферированный генератор на основе сдвига фаз. Генераторы гармонических сигналов. Теоретические сведения.
- •Принцип работы.
- •Буферированный генератор на основе сдвига фаз.
- •9. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Генератор Буббы. Генераторы гармонических сигналов. Теоретические сведения.
- •Принцип работы.
- •Генератор Буббы.
- •10. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Квадратурный генератор. Генераторы гармонических сигналов. Теоретические сведения.
- •Принцип работы.
- •Квадратурный генератор.
- •11. Модуляция и разновидности модулированных сигналов. Общие сведения о модуляции. Широтно-импульсная модуляция. Модуляция и разновидности модулированных сигналов. Общие сведения о модуляции.
- •Широтно-импульсная модуляция.
- •12. Инверторы. Общие сведения, принцип работы, схемотехника. Автономный однофазный инвертор. Полумостовая и мостовая топологии. Инверторы. Общие сведения, принцип работы, схемотехника.
- •Автономный однофазный инвертор.
- •Полумостовая и мостовая топологии.
- •13. Инверторы. Общие сведения, принцип работы, схемотехника. Автономный трехфазный инвертор. Способы управления. Инверторы. Общие сведения, принцип работы, схемотехника.
- •Автономный трехфазный инвертор.
- •Способы управления.
- •14. Принципы автоматического управления. Общие сведения о структурах систем управления. Регуляторы. Принципы автоматического управления. Общие сведения о структурах систем управления.
- •Регуляторы.
- •15. Электрический ток в вакууме. Вакуумный диод. Вакуумный триод.
- •Электрический ток в вакууме. Вакуумный диод.
- •Вакуумный триод.
- •16. Ламповый генератор с независимым возбуждением.
- •Ламповый генератор с независимым возбуждением.
- •Транспортировку осуществлять только в вертикальном положении!
- •17. Ламповый генератор с самовозбуждением.
- •Ламповый генератор с самовозбуждением.
Способы управления.
180-градусное управление.
Эффективное значение линейного напряжения:
Эффективное значение фазного напряжения:
При 180-градусном управлении каждый из транзисторов находится в открытом состоянии 180°, пары транзисторов, образующих вертикальные стойки, как и в однофазных двухтактных схемах, работают в противофазе, управление вертикальными стойками транзисторов осуществляется со сдвигом на 120°.
Алгоритм управления транзисторами и диаграммы напряжений показаны на рисунке выше.
Управляющие импульсы на каждый очередной транзистор подаются через 60°. В результате на интервале одного периода выходного напряжения образуется шесть интервалов неизменного состояния схемы.
На выходе инвертора появляются три линейных напряжения с амплитудой, равной напряжению Ud, и с паузой на нулевом уровне 60°. Эти напряжения взаимно сдвинуты на 120°. Наличие указанной паузы автоматически обеспечивает достаточно хорошее качество переменного напряжения, так как отсутствуют третья и кратные ей гармоники.
Фазные напряжения наглядно и легко определяются для симметричной активной нагрузки, т.е. при ZA=ZB=ZC=RH.
На любом интервале фазные нагрузки подключаются к источнику питания так, что две из них включаются параллельно между собой и последовательно с третьей. В связи с этим очевидно, что в условиях равенства сопротивлений нагрузки в фазах напряжения фаз, нагрузки которых включены параллельно, равны ±Uвx/3, а напряжение фазы, нагрузка которой включена последовательно, равно ±2Uвx/3. В результате фазные напряжения имеют двухступенчатую форму с амплитудой первой ступени Ud/3 и второй ступени 2Ud/3. Фазные напряжения также имеют взаимный фазовый сдвиг в 120°.
120-градусное управление.
Эффективное значение линейного напряжения:
Эффективное значение фазного напряжения:
При 120-градусном управлении каждый из транзисторов находится в открытом состоянии 120° в соответствии с алгоритмом управления, показанным на рисунке.
Если при 180-градусном управлении в любой момент одновременно открыты три ключа, то при 120-градусном — два.
Из схем подключения нагрузок для каждого интервала неизменного состояния транзисторов видно, что все время к источнику подключены последовательно по две фазные нагрузки, а третья находится в отключенном состоянии. Если принять сопротивления фаз нагрузки одинаковыми и чисто активными, то выходные фазные напряжения будут на соответствующих интервалах равны либо Ud/2, либо нулю.
Линейное напряжение, таким образом, имеет ступенчатую форму с амплитудой первой ступени Ud и второй Ud/2.
При активно-индуктивной нагрузке процессы усложняются, а форма напряжений начинает изменяться. Это является недостатком инвертора при 120-градусном управлении.
Тактностъ схемы характеризуется взаимосвязью работы транзисторных ключей. В двухтактных схемах всегда можно выделить пары противотактно работающих ключей (один замыкается, другой размыкается). В однотактных ключи работают синхронно.
Регулировать значение выходного напряжения АИН можно несколькими способами:
широтно-импульсное регулирование (ШИР);
метод геометрического суммирования;
широтно-импульсная модуляция (ШИМ).
Наибольшее применение на практике получили три способа широтно - импульсного регулирования напряжения инверторов:
- Регулирование по прямоугольному закону, когда среднее значение выходного напряжения и ширина импульса изменяются по прямоугольному признаку;
- Регулирование по трапецеидальному закону - в этом случае среднее значение выходного напряжения имеет вид трапеции;
- Регулирование по синусоидальному закону, когда ширина импульсов выходного напряжения регулируется по синусоидальному закону.
Регулирование выходного напряжения АИН.
Если передний фронт составляющих импульсов сдвигать на угол α в сторону отставания, как показано на рисунке (или задний фронт в сторону опережения, или оба одновременно), то будет уменьшаться длительность составляющих импульсов λ, а значит, будет изменяться действующее значение напряжения на нагрузке.
Из полученного выражения и из временной диаграммы следует, что максимальное напряжение соответствует нулевому значению угла α. Очевидно, что выходное напряжение равно нулю при α=π. Регулировочная характеристика, построенная по полученной зависимости, имеет вид, показанный на рисунке.
Различают два типа широтно-импульсной модуляции:
Однополярная ШИМ;
Двухполярная ШИМ.
При однополярной ШИМ выходное напряжение формируется из последовательности однополярных импульсов. Для образования паузы при активно-индуктивной нагрузке схема управления должна обеспечить протекание тока нагрузки через два вентиля, подключающих нагрузку накоротко к одной из шин источника питания.
При двухполярной ШИМ паузы однополярной ШИМ заполняются импульсами противоположной полярности.