- •Передаточные функции аналоговых фильтров.
- •Описание rc-фильтров.
- •Сравнение пассивных фильтров с другими видами фильтров.
- •Передаточные функции аналоговых фильтров.
- •Описание lc-фильтров.
- •Сравнение пассивных фильтров с другими видами фильтров.
- •3. Описание и классификация активных фильтров. Фильтр нижних частот. Описание и классификация активных фильтров.
- •Фильтр нижних частот.
- •4. Описание и классификация активных фильтров. Фильтр верхних частот. Описание и классификация активных фильтров.
- •Фильтр верхних частот.
- •5. Описание и классификация активных фильтров. Полосовые фильтры. Описание и классификация активных фильтров.
- •Полосовые фильтры.
- •6. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Генератор на основе моста Вина. Генераторы гармонических сигналов. Теоретические сведения.
- •Принцип работы.
- •Генератор на основе моста Вина.
- •7. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Генератор на основе сдвига фаз с одним оу. Генераторы гармонических сигналов. Теоретические сведения.
- •Принцип работы.
- •Генератор на основе сдвига фаз с одним оу.
- •8. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Буферированный генератор на основе сдвига фаз. Генераторы гармонических сигналов. Теоретические сведения.
- •Принцип работы.
- •Буферированный генератор на основе сдвига фаз.
- •9. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Генератор Буббы. Генераторы гармонических сигналов. Теоретические сведения.
- •Принцип работы.
- •Генератор Буббы.
- •10. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Квадратурный генератор. Генераторы гармонических сигналов. Теоретические сведения.
- •Принцип работы.
- •Квадратурный генератор.
- •11. Модуляция и разновидности модулированных сигналов. Общие сведения о модуляции. Широтно-импульсная модуляция. Модуляция и разновидности модулированных сигналов. Общие сведения о модуляции.
- •Широтно-импульсная модуляция.
- •12. Инверторы. Общие сведения, принцип работы, схемотехника. Автономный однофазный инвертор. Полумостовая и мостовая топологии. Инверторы. Общие сведения, принцип работы, схемотехника.
- •Автономный однофазный инвертор.
- •Полумостовая и мостовая топологии.
- •13. Инверторы. Общие сведения, принцип работы, схемотехника. Автономный трехфазный инвертор. Способы управления. Инверторы. Общие сведения, принцип работы, схемотехника.
- •Автономный трехфазный инвертор.
- •Способы управления.
- •14. Принципы автоматического управления. Общие сведения о структурах систем управления. Регуляторы. Принципы автоматического управления. Общие сведения о структурах систем управления.
- •Регуляторы.
- •15. Электрический ток в вакууме. Вакуумный диод. Вакуумный триод.
- •Электрический ток в вакууме. Вакуумный диод.
- •Вакуумный триод.
- •16. Ламповый генератор с независимым возбуждением.
- •Ламповый генератор с независимым возбуждением.
- •Транспортировку осуществлять только в вертикальном положении!
- •17. Ламповый генератор с самовозбуждением.
- •Ламповый генератор с самовозбуждением.
12. Инверторы. Общие сведения, принцип работы, схемотехника. Автономный однофазный инвертор. Полумостовая и мостовая топологии. Инверторы. Общие сведения, принцип работы, схемотехника.
Применение полностью управляемых ключей (транзисторов, запираемых тиристоров и др.) позволяет не только изменять параметры преобразователей, но и создавать новые типы электрических устройств. К последним относятся автономные инверторы, или инверторы с самокоммутацией, — преобразователи постоянного тока в переменный, в которых используются полностью управляемые ключи.
Как уже отмечалось, применение полностью управляемых ключей позволяет не только упростить схемы автономных инверторов, но и значительно повысить качество преобразуемых параметров в преобразователях. Такая возможность реализуется посредством широтно-импульсной модуляции процессов изменения напряжений и токов инвертора. В преобразователях переменного тока применяется ШИМ по синусоидальным или другим требуемым законам изменения основных параметров. В результате обеспечивается синусоидальность (снижение уровня высших гармоник по сравнению с основной гармоникой) напряжения или тока. Кроме того, формирование напряжения требуемого спектрального состава позволяет создавать новые виды силовых электронных устройств — активные и гибридные фильтры. Одновременно со снижением высших гармоник тока (напряжения) ШИМ повышает коэффициент мощности в выпрямителях, инверторах, ведомых сетью, преобразователях частоты и других типах преобразователей.
Классификация инверторов:
1) По способу запирания:
· Ведомые сетью, в таких инверторах запирание силовых ключей происходит в момент подачи на анод отрицательной полуволны входного напряжения.
· Автономные инверторы (АИ), в таких инверторах силовые ключи запираются либо с помощью вспомогательных коммутирующих конденсаторов, либо с помощью управляющих запирающих импульсов от БУИ.
2) По форме выходного напряжения и тока:
· Автономные инверторы напряжения (АИН), в которых форма выходного напряжения не зависит от характера нагрузки, а определяется только последовательностью коммутации силовых ключей, а форма выходного тока зависит от характера нагрузки.
· Автономные инверторы тока (АИТ), в которых форма выходного тока не зависит от характера нагрузки, а форма выходного напряжения зависит от характера нагрузки.
3) По элементной базе:
· Инверторы на базе тиристоров, область применения таких элементов определяется напряжением питающей сети. Как правило, тиристорные инверторы используют в сетях напряжением 6-10 кВ.
· Транзисторные автономные инверторы, в качестве силовых ключей у них используются биполярные транзисторы. Наиболее современным транзистором является IGBT, область применения которого ограничивается до 6 кВ.
4) По управляемости:
· Автономные инверторы с поочередной коммутацией.
· Автономные инверторы с индивидуальной коммутацией.
5) По виду выпрямителя:
· С управляемым выпрямителем.
· С неуправляемым выпрямителем.
Автономный однофазный инвертор.
Автономные инверторы — это устройства, преобразующие постоянный ток в переменный с постоянной или регулируемой частотой и работающие на автономную нагрузку.
Основные области применения автономных инверторов:
- питание потребителей переменного тока в устройствах, где единственным источником энергии является аккумуляторная батарея (например, бортовые источники питания), а также питание ответственных потребителей при аварии в сети переменного тока (например, электросвязь);
- электротранспорт, питающийся от контактной сети постоянного или переменного напряжения, где для регулируемого электропривода желательно иметь простые, дешевые и надежные короткозамкнутые асинхронные двигатели;
- электропривод, где требуется переменная скорость вращения; в этом случае инвертор является источником с регулируемой частотой и напряжением.
В отличие от инверторов, ведомых сетью, у автономного инвертора на стороне переменного тока нет другого источника энергии той же частоты, кроме самого инвертора.
трансформаторы постоянного тока, преобразующие постоянный ток одного уровня в постоянный ток другого уровня;
источники прямого преобразования энергии, в которых вырабатывается постоянный ток относительно низкого напряжения (термо- и фотоэлектрические генераторы, топливные элементы, МГД-генераторы), для использования этой энергии требуется преобразовать постоянный ток в переменный ток определенной частоты;
передача энергии постоянным током - для преобразования переданного на дальнее расстояние постоянного тока в переменный.
Требования, предъявляемые к автономным инверторам:
обеспечение максимального КПД;
минимальная установленная мощность отдельных узлов и элементов;
возможность широкого регулирования выходного напряжения;
обеспечение стабильности выходного напряжения при изменении величины и характера нагрузки;
обеспечение синусоидальной или близкой к синусоидальной форме кривой выходного напряжения;
отсутствие срывов инвертирования при перегрузках;
возможность работы в режиме холостого хода;
обеспечение максимальной надежности и устойчивости.
Под установленной мощностью какого-либо элемента понимается основной его параметр, определяющий габариты, вес и стоимость элемента. Установленная мощность элементов является одним из основных факторов, определяющих целесообразность применения той или иной схемы автономного инвертора. Наиболее рациональной считается та схема, у которой суммарная установленная мощность имеет наименьшее значение. При этом сравниваются суммарные приведенные установленные мощности инверторов. Под приведенными установленными мощностями элементов понимают действительные мощности, умноженные на коэффициент приведения к основному элементу по выбранному критерию оценки.