

С учетом перечисленных условий рассматриваемого процесса дросселирования, уравнение первого начала термодинамики для потока по балансу рабочего тела
dQ* + dQ** = dH + dW * + dW **
примет вид
H2 - H1 = 0 или H = idem
Это значит, что рассматриваемый процесс дросселирования
является процессом изоэнтальпийным: энтальпия рабочего
.
тела до дросселя численно равна энтальпии рабочего тела после дросселя. При течении внутри дросселя энтальпия газа или пара меняется.

Если рассматривать в качестве местного сопротивления
сужение канала, в суженном сечении поток ускоряется, кинетическая энергия увеличивается и энтальпия рабочего тела уменьшается (процесс 1 - 2'). После дросселя сечение потока вновь возрастает, поток тормозится, кинетическая энергия уменьшается, а энтальпия увеличивается до прежнего значения (процесс 2' - 2).


Коэффициент Джоуля – Томсона определяется из следующего уравнения, выведенного из математических выражений первого начала термодинамики и второго начала
термостатики |
æ |
¶v ö |
|
|
|
|
|
|
|||
|
T ç |
|
÷ |
- v |
|
|
|
||||
Dh = |
è |
¶T ø p |
|
. |
|
|
cp |
|
|||
|
|
|
|
Знак дифференциального дроссель–эффекта (коэффициента Джоуля – Томсона) определяется из анализа уравнения. В зависимости от характера изменения температуры T, имеют место три вида дроссель–эффекта (процесс дросселирования всегда происходит с падением давления dp<0):
1.Дроссель–эффект положительный (Dh > 0), в этом случае процесс дросселирования сопровождается снижением температуры рабочего тела (dT<0);

2.Дроссель–эффект отрицательный (Dh < 0), в этом случае процесс дросселирования сопровождается повышением температуры рабочего тела (dT>0);
3.Дроссель–эффект равен нулю (Dh = 0), если в процессе дросселирования температура рабочего тела не изменяется. Нулевой дроссель-эффект наблюдается при дросселировании идеального газа.
Как показывает опыт, для одного и того же вещества в зависимости от значений параметров состояния коэффициент Джоуля – Томсона Dh может иметь положительные, отрицательные значения, а также быть равным нулю.
Состояние газа или жидкости, которому соответствует условие Dh = 0, называется точкой инверсий. Геометрическое место точек инверсии на диаграмме состояния данного вещества называется кривой инверсии.

Кривая инверсии описывается уравнением
. |
æ |
¶v ö |
= |
|
v |
|
|
ç |
|
÷ |
|
|
|
|
|
T |
||||
|
è |
¶T ø p |
|
Для каждого вещества в диаграмме р - v имеется своя кривая инверсии. Закон соответственных состояний позволяет построить обобщенные кривые инверсии для групп термодинамически подобных веществ. Для природных газов инверсионная диаграмма приведена на графике в виде π = f(τ)


Пары и парообразование
Процесс парообразования. Основные определения
Процесс парообразования и методика определения основных характеристик процесса парообразования для всех жидкостей практически аналогичны, что дает возможность рассматривать процесс парообразования на примере воды, как одного из наиболее распространенных веществ в природе.
Рассмотрим изобарный процесс парообразования 1 кг воды в координатах р – v


Процесс кипения протекает на участке а'- а" при постоянном давлении р1 и постоянной температуре ts1. В точке (а") вода полностью испаряется. Пар в этом состоянии называется сухим насыщенным. На участке (а'-а") вода находится в двух фазах и состоит из смеси кипящей воды и сухого насыщенного пара. Эта двухфазная равновесная система называется насыщенным (влажным) паром. При дальнейшем изобарном подводе теплоты сухой насыщенный пар превращается в перегретый (а). Перегретый пар имеет температуру выше температуры кипения (насыщения) при данном давлении.
Точки на линии a"-b"-с" характеризуют состояние сухого насыщенного пара, а кривая определяет зависимость удельного объема сухого пара от давления = f(p) и называется верхней пограничной кривой. Пограничные кривые
пересекаются в точке (К), называемой критической.