Добавил:
ac3402546@gmail.com Направление обучения: транспортировка нефти, газа и нефтепродуктов группа ВН (Вечерняя форма обучения) Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

учебники / Короновский Н.В. «‎Общая геология‎» 3-ие издание

.pdf
Скачиваний:
1026
Добавлен:
31.05.2021
Размер:
38 Mб
Скачать

Глава 17. Тектонические движения и деформации горных пород

451

с двух сторон много и они параллельны друг другу, то образуется сложный многоступенчатый грабен. Прослеживаясь на тысячи километров и образуя сложные кулисообразные цепочки, системы крупных, многоступенчатых грабенов называются рифтами или рифтовыми системами. Хорошо известна Великая Африкано-Аравийская система рифтов, прослеживаемая от южной Турции через Левант в Красное море и далее от района Эфиопии на юг Африки до реки Замбези. Длина такой континентальной рифтовой системы составляет более 6500 км, и образовалась она, по геологическим понятиям, совсем недавно, всего лишь 15–10 млн лет тому назад (рис. 17.26).

Рис. 17.25. Сочетание разрывных нарушений: 1 — ступенчатые сбросы; 2 — грабен; 3 — горст; 4 — листрические сбросы; 5 — грабены и горсты в сложном рифте

Знаменитое озеро Байкал, крупнейшее в мире хранилище пресной воды, как раз и приурочено к асимметричному грабену, в котором наибольшая глубина озера достигает 1620 м, а глубина днища грабена по осадкам плиоценового возраста (4 млн лет) составляет 5 км (рис. 17.27). Байкальский грабен многоступенчатый и является частью сложной рифтовой системы молодых грабенов, протягивающейся на 2500 км. Такие же рифтовые системы, состоящие из грабенов, известны в Европе — Рейнский грабен, древние грабены Осло, Викинг в Северном море; в Северной Америке — Рио-Гранде.

Самые грандиозные рифтовые системы Земли, состоящие из узких грабенов, приурочены к сводам срединно-океанских хребтов. Их общая длина превышает 80 тыс. км. И там их формирование связано

Рис. 17.26. Схематические профили, показывающие развитие Кенийского сложного грабена (Восточная Африка) с позднего миоцена до современности. Черные точки и штрихи — вулканические покровы разного возраста

км

км

Рис. 17.27. Поперечный профиль через грабен оз. Байкал

Глава 17. Тектонические движения и деформации горных пород

453

с постоянным растяжением океанской коры ввиду того, что из мантии Земли все время поступают базальты, которые наращивают океаническую кору. Этот процесс называется спредингом.

Горстом называется структура, обладающая формой, противоположной грабену, т. е. центральная ее часть поднята. Это связано с тем, что грабен — провал, связанный с растягивающими усилиями, тогда как образование горста обусловлено сжатием.

Покров. Пожалуй, никакие другие типы разрывов не вызывали таких ожесточенных споров, порой драматических, среди геологов, как покровы. «Родиной» покровов считаются Альпы, где их впервые описали в конце прошлого века.

Покровы и надвиги составляют характерную черту горно-складча- тых сооружений, испытавших сильное сжатие, например Альпы, Пиренеи, Большой Кавказ, Канадские Скалистые горы, Урал и т. д. (рис. 17.28). В настоящее время установлены покровы в Аппалачских горах востока Северной Америки, переместившиеся на запад по очень пологой поверхности более чем на 200 км с востока.

Рис. 17.28. Тектонический покров. 1 — поверхность разрыва; 2 — аллохтон (тело покрова); 3 — автохтон; 4 — тектоническое окно; 5 — тектонический останец.

D1 — нижний девон. К — мел

Еще более яркий пример — это Скандинавские горы, которые, протягиваясь с юга на север на 1500 км, представляют собой гигантский покров, надвинутый по горизонтальной поверхности с запада, со стороны Атлантики, на древние кристаллические толщи Балтийского щита на расстояние более 250 км. Из-под разрушенного и размытого покрова (аллохтона) местами в тектонических окнах проглядывают породы автохтона, т. е. тех толщ, по которым покров двигался.

Покровы и надвиги интересны тем, что под ними могут залегать важные полезные ископаемые, особенно нефть и газ. Но на поверхности никаких признаков нефти нет, и, чтобы добраться до нее, надо пробурить 3–4 км совсем других пород — аллохтона, что было сделано в Аппалачах и Предкарпатье, да и во многих других местах.

Запад Северной Америки — Калифорния — это район частых и сильных землетрясений, причем последнее и очень мощное произошло

454

Часть III. Процессы внутренней динамики

в конце 1993 г., когда разрушения охватили крупный город ЛосАнджелес. Виновником этих землетрясений является знаменитый тектонический разрыв-сдвиг Сан-Андреас, т. е. сдвиг Святого Андрея (рис. 17.29). При сдвиге два блока горных пород перемещаются вдоль плоскости разрыва. Именно такая картина и наблюдается в сдвиге Сан-Андре- ас, причем величина среднего смещения оценивается примерно в 1 м за 100 лет. Непрерывными движениями по этому сдвигу смещаются русла рек, разрушаются и смещаются бетонные желоба для воды, изгороди. Наряду с медленными смещениями случаются и мгновенные подвижки, которые вызывают землетрясения.

Рис. 17.29. Сдвиг Сан-Андреас в Калифорнии (США). Города Сан-Франциско и Лос-Анджелес находятся

в опасной сейсмической зоне

Глава 17. Тектонические движения и деформации горных пород

455

Большие массы горных пород, смещаемые вдоль какой-либо поверхности разрыва, благодаря своему огромному весу оказывают друг на друга мощное давление, под воздействием которого образуется гладкая, отполированная поверхность в горных породах, называемая зеркалом скольжения.

Если между перемещающимися блоками горных пород попадают твердые обломки, то на зеркалах скольжения появляются штрихи и борозды, выдавленные этими обломками. Нередко в зоне разрыва наблюдается скопление остроугольных обломков разного размера за счет дробления блоков при смещении, иногда сцементированных глиной, образовавшейся из тонко перетертых обломков. Такие породы называются тектонической брекчией, или милонитом. В крупных разрывных нарушениях мощность милонитов может достигать десятков метров.

Глава 18

ЗЕМЛЕТРЯСЕНИЯ

Землетрясения — это одна из самых страшных природных катастроф, не только вызывающая опустошительные разрушения, но и уносящая десятки и сотни тысяч человеческих жизней. Землетрясения всегда вызывали ужас своей силой, непредсказуемостью, последствиями. Человек в таких случаях чувствует себя брошенным на произвол судьбы. Земная твердь, самое незыблемое в представлении человека, вдруг оказывается подвижной, она вздымается волнами и раскалывается глубокими ущельями.

Известно большое число катастрофических землетрясений, во время которых число жертв составило многие тысячи. В 1556 г. в Китае, в провинции Шэньси, страшное землетрясение привело к гибели 830 тыс. человек, а многие сотни тысяч получили ранения. Лиссабонское землетрясение в Португалии в 1755 г. унесло более 60 тыс. человеческих жизней; Мессинское землетрясение в 1923 г. — 150 тыс.; тянь-шаньское в Китае в 1976 г. — 650 тыс. и там же в Ганьсу в 1920 г. более 200 тыс. В Агадире 29 февраля 1960 г., в Алжире, погибло 20 тысяч человек. Этот скорбный список можно продолжать и продолжать. В Армении 7 декабря 1988 г. в результате спитакского землетрясения погибло более 25 тыс. человек и 250 тыс. было ранено. 28 мая 1995 г. на Севере Сахалина мощным землетрясением был стерт с лица Земли городок Нефтегорск, где погибло более 2 тыс. человек.

Землетрясения разной силы и в разных точках земного шара происходят постоянно, приводя к огромному материальному ущербу и жертвам среди населения. Поэтому ученые разных стран не оставляют попыток определить природу землетрясения, выявить его причины и, самое главное, научиться его предсказывать, что, к сожалению, за исключением единичных случаев, пока не удается.

18.1. МЕХАНИЗМ ВОЗНИКНОВЕНИЯ ЗЕМЛЕТРЯСЕНИЯ И ЕГО ПАРАМЕТРЫ

Землетрясение тектонического типа, т. е. связанное с внутренними эндогенными силами Земли, представляет собой процесс растрескивания, идущий с некоторой конечной скоростью, а не мгновенно. Он предполагает образование и обновление множества разномасштабных разрывов со вспарываением каждого из них не только с высвобождением, но и с перераспределением энергии в некотором объеме. Когда мы го-

Глава 18. Землетрясения

457

ворим о том, что сила внешнего воздействия на горные породы превысила их прочность, то следует иметь в виду, что в геомеханике четко различают прочность горных пород как материала, которая относительно высока, и прочность породного массива, включающего, помимо материала горных пород, еще и структурные ослабленные зоны. Благодаря последним прочность породного массива существенно ниже, чем прочность собственно пород.

Скорость распространения разрывов составляет несколько километров в секунду, и этот процесс разрушения охватывает некоторый объем пород, носящий название очага землетрясения. Гипоцентром называется центр очага, условно точечный источник коротко периодных колебаний (рис. 18.1).

Рис. 18.1. Очаг землетрясения и распространения сотрясений в объеме породы.

1 — область очага, или гипоцентр, 2 — проекция гипоцентра на поверхность Земли — эпицентр. Линии изосейст на поверхности — линии равных сотрясений в баллах

В большинстве случаев, хотя и не всегда, разрывы имеют сдвиговую природу и очаг землетрясения охватывает определенный объем вокруг него. Сейсмология изучает упругие волны, распространяющиеся динамически в частотном диапазоне 10-3–102 Гц со скоростью в 2–5 км/с. Проекция гипоцентра на земную поверхность называется эпицентром землетрясения. Интенсивность землетрясения эпицентра изображается линиями равной интенсивности землетрясений — изосейстами. Область максимальных баллов вокруг эпицентра носит название плейстосейстовой области.

458

Часть III. Процессы внутренней динамики

Основному подземному сейсмическому удару — землетрясению — обычно предшествуют землетрясения, или форшоки, свидетельствующие о критическом нарастании напряжений в горных породах. После главного сейсмического удара обычно происходят еще сейсмические толчки, но более слабые, чем главный удар. Они называются афтершоками и свидетельствуют о процессе разрядки напряжений при образовании новых разрывов в толще пород.

По глубине гипоцентров (фокусов) землетрясения подразделяются на три группы: 1) мелкофокусные — 0–60 км; 2) среднефокусные — 60–150 км; 3) глубокофокусные — 150–700 км. Но чаще всего гипоцентры землетрясений сосредоточены в верхней части земной коры на глубине 10–30 км, где кора характеризуется наибольшей жесткостью и хрупкостью.

Быстрые, хотя и неравномерные, смещения масс горных пород вдоль плоскости разрыва вызывают деформационные волны — упругие колебания в толще пород, которые, распространяясь во все стороны и достигая поверхности Земли, производят на ней основную разрушающую работу. В гл. 2 уже говорилось о главных типах объемных и поверхностных сейсмических волн. К первым относятся продольные — Р (более скоростные) и поперечные — S (менее скоростные) волны (см. рис. 2.2). Ко вторым — волны Лява — L и Рэлея — R. Волны Р представляют собой чередование сжатия и растяжения и способны проходить через твердые, жидкие и газообразные вещества, в то время как волны S при своем распространении сдвигают частицы вещества под прямым углом к направлению своего пути.

Скорость продольных волн:

,

где µ — модуль сдвига; ρ — плотность среды, в которой распространяется волна; λ — коэффициент, связанный с модулем всестороннего сжатия К соотношением

.

Скорость поперечных волн:

.

Так как модуль сдвига µ в жидкости и газе равен 0, то поперечные волны не проходят через жидкости и газы.

Глава 18. Землетрясения

459

Поверхностные волны подобны водной ряби на озере. Волны Лява заставляют колебаться частицы пород в горизонтальной плоскости параллельно земной поверхности, под прямым углом к направлению своего распространения. А волны Рэлея, скорость которых меньше, чем волн Лява, возникают на границе раздела двух сред и, воздействуя на частицы, заставляют их двигаться по вертикали и горизонтали в вертикальной плоскости, ориентированной в направлении распространения волн.

Поверхностные волны распространяются медленнее, чем объемные, и довольно быстро затухают как на поверхности, так и на глубине. Волны Р, достигая поверхности Земли, могут передаваться в атмосферу в виде звуковых волн на частотах более 15 Гц. Этим объясняется «страшный гул», иногда слышимый людьми во время землетрясений.

Сейсмические волны, вызываемые землетрясениями, можно зарегистрировать, используя так называемые сейсмографы — приборы, в основе которых лежат маятники, сохраняющие свое положение при колебаниях подставки, на которой они расположены. Первые сейсмографы появились 100 лет назад. На рис. 18.2 изображены принципиальные схемы вертикальных и горизонтальных сейсмографов, а также пример сейсмограммы — записи сейсмических колебаний, на которых хорошо наблюдаются первые вступления волн V и S. Отмечая время первого вступления волн, т. е. появления волны на сейсмограмме, и зная скорости их распространения, определяют расстояние до эпицентра землетрясения (рис. 18.3, 18.4). В наши дни на земном шаре установлены многие сотни сейсмографов, которые немедленно регистрируют любое, даже очень слабое землетрясение и его координаты. Начиная с первых сейсмических станций, оснащенных высокочувствительными сейсмографами, созданными академиком Б. Б. Голицыным в начале ХХ в., сеть таких станций в России непрерывно расширялась, хотя станции располагались неравномерно, учитывая различную сейсмичность регионов. Сейчас этих станций в России более 140, что в 25 раз ниже, чем в Германии, причем только 15 % этих станций оснащено современными цифровыми сейсмографами. Существуют также девять центров сбора и обработки данных, работающих в режимах текущей и срочной обработки. Сведения о текущей сейсмической обстановке регулярно публикуются в сейсмологических бюллетенях и каталогах. Сейчас происходят развитие и переоснащение сейсмических сетей России современной аппаратурой. Определение глубины очага землетрясения представляет собой более сложную задачу, а существующие методы не отличаются точностью.

Интенсивность землетрясений. Интенсивность, или сила, землетрясений характеризуется как в баллах (мера разрушений), так и понятием магнитуда (высвобожденная энергия). В России используется

Рис. 18.2. Схема горизонтального сейсмографа с механической записью сейсмограммы острием на закопченном барабане регистратора (А): 1 — станина прибора; 2, 3 — точки крепления стальных нитей к станине; 4, 5 — точки крепления нитей к стержню груза сейсмографа; 6 — груз сейсмографа; 7 — закопченный барабан. Действие вертикального сейсмографа (Б). На горизонтальные толчки прибор реагирует очень слабо

.

Рис. 18.3. Время пробега сейсмических волн от эпицентра землетрясения, используемое для определения расстояния от эпицентра до точки регистрации землетрясения

Соседние файлы в папке учебники