Добавил:
ac3402546@gmail.com Направление обучения: транспортировка нефти, газа и нефтепродуктовrnгруппа ВН (Вечерняя форма обучения) Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

учебники / Короновский Н.В. «‎Общая геология‎» 3-ие издание

.pdf
Скачиваний:
1609
Добавлен:
31.05.2021
Размер:
38 Mб
Скачать

Глава 14. Геологическая деятельность океанов и морей

341

Происхождение подводных гидротермальных систем связано с взаимодействием океанской воды и базальтов дна, при котором в воду переходит много химических элементов, содержащихся в базальтах и газах, при этом сами базальты также изменяются, претерпевая метаморфизм. Проникшая по трещинам в глубокие горизонты донных базальтов вода нагревается от тепла магматических очагов, существующих под рифтовыми зонами океанов. Удивительно, но весь объем океанских вод на Земле прокачивается через гидротермальные системы всего за 3 млн лет.

Таким образом, на огромных пространствах океанского дна работает гигантский тепловой насос. Только в одном гидротермальном поле Индевор в северной части Тихого океана он перекачивает 20 тыс. т воды в секунду. Открытие гидротермальных систем океанического дна — это шаг в совершенно новый мир, еще 20 лет назад неизвестный геологам.

Говоря об океанском осадконакоплении, следует отметить такой важный тип, как «лавинная» седиментация, выделенная в 70-е гг. XX в. А. П. Лисицыным. Эта седиментация высоких (10 см/1000 лет) и сверхвысоких (1 м/1000 лет) скоростей связана не с выпадением частиц из взвеси, а с течением плотного осадочного водонасыщенного материала под действием силы тяжести. Это особый тип седиментации, имеющий три уровня по вертикали с размахом почти 10 км: 1) устья рек, дельты и эстуарии; 2) континентальный склон, где у подножия наблюдается максимальное скопление материала, и 3) дно глубоководных желобов (до 11 км), существует только в пределах активных континентальных окраин.

Биогенное осадконакопление. В океанах присутствует огромное разнообразие организмов (рис. 14.50). Выделяются три главных типа биоса. Бентос — это организмы, живущие на дне; нектон — активно и свободно плавающие организмы — рыбы, тюлени, киты и др.; планктон — пассивно плавающие организмы, переносимые течениями и волнами. Морские организмы в подавляющей своей массе относятся к бентосу (98 %), и только 2 % из 180 тыс. видов относятся к планктону и нектону.

Для существования организмов нужны питательная среда и солнечный свет, хотя есть виды, обитающие в условиях полной темноты в глубоких впадинах океанов. Солнце проникает в воду до глубины примерно 100 м, и эта зона называется эвфотической, т. е. полностью освещенной. Отсюда следует, что водоросли, прикрепленные ко дну, растут только на мелком шельфе, в то время как фитопланктон — свободно плавающие водоросли — распространен в поверхностной зоне воды всех океанов. Бентосные водоросли отличаются исключительной

342

Часть II. Процессы внешней динамики

Рис. 14.50. Главные типы биоса в океанах

продуктивностью, в то время как фитопланктон дает всего 100 г углерода на 1 м2 в год.

Бентосные организмы могут вести неподвижный, прикрепленный образ жизни — кораллы, губки, мшанки. Они называются сессильным бентосом. Другие, наоборот, передвигаются по дну — вагильный бентос, например морские звезды и ежи, крабы, черви, двустворки. Все эти организмы могут жить либо на поверхности дна — это эпифауна, либо внутри ниш в каменистом дне в высверленных дырках, в осадках — инфауна. Эпифауны насчитывается более 125 тыс. видов, тогда как инфауны всего 30 тыс.

Плавающий в поверхностном слое воды планктон, постепенно отмирая, превращается в детрит, который вместе с еще живыми организмами медленно оседает на дно подобно дождю — сестону, служащему пищей для бентоса. Этой взвесью питаются организмы — сестонофаги, которые фильтруют через себя воду.

Организмами на дне производится большая работа. Часть из них сверлит и растворяет скальные породы, производя биоэрозию; другая — пропускает через себя ил на дне (илоеды): третья зарывается в ил (двустворки). В результате верхняя часть осадков мощностью 1–1,5 м перерабатывается, уплотняется, и получается так называемое «твердое дно» (hard ground), нередко встречающееся в ископаемом состоянии и свидетельствующее о том, что во время переработки дна осадконакопления не происходило.

В поверхностных водах шельфа биос потребляет фосфор, азот, кремний, железо, молибден, поэтому воды он объединяет. Когда отмершие планктонные организмы опускаются глубже эвфотической зоны, раз-

Глава 14. Геологическая деятельность океанов и морей

343

лагаясь, они освобождают биогенные элементы. Верхняя поверхность термоклина на уровне 100 м — это рубеж между бедной и богатой биогенными элементами зонами. Нарушение термоклина, вызванное апвеллингом, сильным волнением, способствует возвращению вод, обогащенных биогенными элементами, в эвфотическую зону.

В экваториальной зоне бентос дает огромное количество материала. Так, в районе Флориды в Северной Америке макробентос производит 1 кг карбонатов на 1 м2 в год в приливной зоне, а в более глубоких горизонтах — до 0,4 кг/м2 в год.

Наиболее распространенные осадки на шельфе представлены макрофоссилиями, кораллово-водорослевыми рифовыми известняками, известняками-ракушечниками и мшанковыми известняками. Микрофоссилии в зоне шельфа мало.

Коралловые рифы распространены в современной тропической зоне океанов и, следовательно, являются индикаторами подобной палеогеографической обстановки в геологическом прошлом. Так называемые коралловые рифы могут быть построены не только кораллами, но и мшанками. Кораллы разных типов растут со скоростью до 2,5 см в год, образуя каркас рифового массива, в котором обитают многочисленные и разнообразные другие организмы, например, в Индийском и Тихом океанах в рифах обитает до 3 тыс. видов. Эти же обитатели и разрушают риф, превращая его в известковый ил.

Среди рифов различают три основных типа: 1) окаймляющие, или береговые; 2) барьерные; 3) атоллы (рис. 14.51).

1.Окаймляющие, или береговые, рифы располагаются недалеко от береговой полосы или непосредственно примыкают к ней, достигая в ширину нескольких сотен метров, а в длину десятков километров (рис. 14.52).

2.Барьерные рифы хотя и простираются вдоль берегов, но отделены от них мелководным пространством — лагунами. Наиболее известным и протяженным, более 2 тыс. км, является Большой Барьерный риф у северо-восточного побережья Австралии в Коралловом море. Это гигантское сооружение шириной до 180 км и мощностью около 200 м отделено от континента лагуной шириной от 30 до 250 км при глубине

внесколько десятков метров.

3.Атоллы представляют собой рифовое кольцо, которое чуть выступает над поверхностью океана и сложено рифовым детритом. Внутри кольца располагается лагуна. Коралловые рифы растут на глубине в несколько десятков метров в теплой освещенной воде, а мощность рифов, выявленная путем бурения, достигает 1,5 км. Это свидетельствует о том, что рифы растут сверху вниз, за счет опускания океанского дна, что впервые было показано в 1842 г. Ч. Дарвином (рис. 14.53). Ширина

Рис. 14.51. Блок-диаграммы трех главных типов современных рифов

Рис. 14.52. Поперечный разрез окаймляющего кораллового рифа

Глава 14. Геологическая деятельность океанов и морей

345

атоллов достигает 40–50 км, многие из них, например Эниветок и Бикини, на которых США проводили испытания ядерного оружия, разбурены и изучены вдоль и поперек. В рифах обнаружены перерывы в строительстве, т. е. были периоды, когда уровень океана опускался. На указанных выше атоллах этот перерыв фиксируется на глубинах 200–300 м.

Рис. 14.53. Формирование атолла. 1 — вулкан, окруженный кольцевым рифом; 2 — погружение вулкана и образование кольцевого рифа; 3 — на месте опустившегося вулкана образовалась лагуна

346

Часть II. Процессы внешней динамики

Ископаемые рифы широко известны и важны потому, что служат хорошими вместилищами для нефти и газа. Такие древние нижнепермские рифы развиты во внешней зоне Предуральского передового прогиба, где с ними связаны многочисленные месторождения нефти.

Наиболее широко распространенными биогенными осадками Мирового океана являются планктоногенные илы, образовавшиеся из пассивно плавающих в поверхностной части вод очень мелких организмов: фораминифер — из группы простейших, класс остракодовых, с однокамерными и многокамерными известковыми раковинами, образованными кальцитом (СаСО3); радиолярий (radiolus — маленький луч), подкласс одноклеточных, скелет из кремнезема — опала; диатомей — одноклеточных микроскопических водорослей (рис. 14.54, 14.55).

Рис. 14.54. Представители бентосных фораминифер, типичные для биофаций внутреннего и внешнего шельфа и верхней батиали Калифорнийского залива

(по Дж. П. Кеннету, 1987). А биофации внутреннего шельфа (7–12): 7 — Bilimina marginana d’Orbigny var, ×11,5; 8 — Buliminella elegantissima (d’Orbigny), ×188; 9 —

Gypsina vesicularis (Parker and Jones), ×67; 10 — Nonionella basispinata (Cushman and Moyer), ×80; 11 — Nonionella atlantica Cushman, ×135; 12 — Quinqueloculina catalinensis

Natland, ×47; Б биофации внешнего шельфа (1–6): 1 — Bolivina acutula Bandy, ×113; 2 — Bulimina denudata Cushman and Parker, ×96; 3 — Bulimina marginata d’Orbigny, ×90; 4 — Cassidulina minuta Cushman, ×225; 5 — Planulina ornata (d’Orbigny), ×75;

6 — Cancris auricula (Fichtel and Moll), ×80

Глава 14. Геологическая деятельность океанов и морей

347

К планктоногенным илам относятся осадки, в которых скелетных остатков не менее 30 %, а 70 % представлено разнообразными глинистыми минералами. По составу различают карбонатные, или известковые, и кремнистые, характер которых зависит от поступления различных организмов, их дальнейшего растворения, привноса абиогенных компонентов и преобразования осадка — илов — в породу.

Поступление биогенных компонентов определяется продуктивностью эвфотической зоны, которая обеднена питательным веществом, т. к. оно расходуется фитопланктоном, а более глубинные воды, обогащенные этим веществом, отделены от эвфотической зоны постоянным термоклином, который служит своеобразным экраном, разрушающимся в случае апвеллинга. Там, где перемешивание вод минимально, и биопродуктивность эвфотической зоны крайне мала.

Рис. 14.55. Связь распространения некоторых современных радиолярий с водными массами (по Дж. П. Кеннету, 1987). Тропические (1–3): 1 — Pterocanium praetextum,

×245; 2 — Ommatartus tetrathalanias, ×307; 3 — Spongaster tetras, ×249. Субтропические (4–7): 4 — Phacodiscid, ×249; 5 — Sticocyrtis sp., ×297; 6 — Lamprocyclas maritalis

(холодноватый), ×248; 7 — Lamprocyclas maritalis (тепловодный), ×297. Полярные — субполярные (8–11): 8 — Spongotrochus glacialis, ×269; 9 — Antarctissa strelkovi, ×265; 10 — Spongotrochus glacialis, ×242; 11 — Lithelius nautiloides, ×344;

12 — Antarctissa denticulata, ×292

348

Часть II. Процессы внешней динамики

Сохранность биогенного материала определяет и характер накапливающихся осадков, т. к. очень много скелетных остатков планктона не достигает океанского дна, растворяясь в воде. Какие факторы влияют на растворение планктонных организмов?

Кремнистые радиолярии растворяются главным образом в поверхностных слоях океанских вод, резко недосыщенных SiO2, а глубже 1 км растворимость SiO2 уменьшается в связи с понижением температуры и увеличением давления. Следовательно, если радиолярия не успела раствориться на первых 1000 м, то у нее есть все шансы достигнуть дна.

Кальцитовые фораминиферы, наоборот, растворяются сильнее всего в придонных водах, на глубине более 4 км, где вода сильно недосыщена СаСО3. Почему на больших глубинах усиленно растворяются известковые раковинки? Потому что понижается температура, возрастает давление общее и СО2, уменьшается содержание карбонатного иона. Взаимодействие СО2, Н2О и СаСО3 выражается уравнением:

СО2 + Н2О + СаСО3 Са2+ + 2НСО3,

где угольная кислота растворяет карбонат кальция.

В океанах выделяются три важных уровня, которые контролируют степень сохранности СаСО3.

1-й уровень — лизоклин — разделяет комплексы фораминифер хорошей и плохой сохранности, т. е. подверженных уже некоторому растворению.

2-й уровень — критическая глубина карбонатонакопления (КГК). Ниже этого уровня содержание СаСО3 в осадках составляет меньше 10 %.

3-й уровень — глубина карбонатной компенсации (КГл) — характеризует границу, разделяющую карбонатосодержащие и полностью бескарбонатные осадки, т. е. на этой глубине опускающиеся на дно организмы с карбонатным скелетом полностью растворяются.

Уровень КГл не остается постоянным, а может изменяться, если поступление СаСО3 усиливается по каким-либо причинам. СаСО3 поступает главным образом за счет выноса реками или «курильщиков», т. е. мест проявления современной гидротермальной активности. Поступление оценивается в 0,11 г/см2 × 1000 лет, а осаждается СаСО3 со скоростью 1,3 г/см2 × 1000 лет, что намного выше. Отсюда следует, что более 90 % СаСО3, сконцентрированного в скелетных остатках фораминифер, должно раствориться.

Распространение СаСО3 в поверхностных осадках Мирового океана хорошо коррелирует с рельефом. Все возвышенности в океанах, включая срединно-океанические хребты, как «снегом», засыпаны карбонатсодержащим илом.

Глава 14. Геологическая деятельность океанов и морей

349

Известковые илы бывают: фораминиферовыми, состоящими из раковинок размером более 60 мкм; кокколитовыми, или нанофоссилиевыми, представленными одноклеточными микроскопическими водорослями, у которых есть наружные щитки из СаСО3 (кокколиты); птероподовыми, образованными арагонитовыми раковинками планктонных микроскопических моллюсков.

Для геологов важно знать, что из известкового ила образуются одни из самых распространенных пород — известняки и белый писчий мел. Ил уплотняется, пористость его уменьшается, а объем сокращается на 30–35 %, при этом белый писчий мел формируется на глубине в несколько сот метров, а известняки — около 1 км. Глубоководное бурение выявило распространение карбонатных пород с возрастом 20–120 млн лет во всех океанах.

Кремнистые илы также представляют собой один из наиболее распространенных видов современных морских осадков. Так как кремний — это широко распространенный элемент на Земле, породы, богатые кремнеземом, и являются его основным источником. Кремний извлекается из морской воды различными организмами, которые строят себе из опала скелет, например диатомеями, кремневыми губками, радиоляриями. После смерти планктонные организмы медленно опускаются через толщу океанских вод, и если не растворятся, то достигнут дна. Если содержание кремнезема в осадках превысит 30 %, то такие осадки называются кремнистыми илами, а в зависимости от преобладающих организмов они могут быть радиоляриевыми или диатомовыми.

В отличие от кальцитовых скелетов фораминифер опаловые скелеты радиолярий растворяются в верхних горизонтах океанских вод, примерно на первом километре, т. к. воды сильно недосыщены кремнеземом, что вызывает быстрое растворение скелетов сразу же после гибели планктона (рис. 14.56). В донные осадки попадает не более 10 % организмов с кремневым скелетом. Таким образом, карбонато- и кремненакопление регулируется недосыщенностью СаСО3 глубинных вод и SiO2 — поверхностных вод (рис. 14.57).

Наиболее богатые кремнеземом осадки распространены в высоких широтах Периантарктической зоны шириной до 2 тыс. км, в области холодного течения, где накапливается до 75 % всего кремнезема, поступающего в океан, количество которого, выносимого реками, оценивается в 4,3 · · 1014 г/град. Поступление SiO2 с суши является главным его источником, однако дополнительное количество SiO2, около 20 %, дают подводная вулканическая деятельность и высокотемпературное изменение базальтов. Зоны кремненакопления связаны с районами апвеллинга и перемешивания вод. В северном поясе кремненакопление развито спорадически — в северной части Тихого океана, в Беринговом и Охотском морях.

Рис. 14.56. Сравнение профилей растворения радиолярий и планктонных фораминифер, составленное по результатам натурных экспериментов. Основная масса радиолярий и диатомовых растворяется в поверхностных водах. Напротив, растворение известковых микрофоссилий происходит главным образом на дне океана, на глубине более 3,5 км (по W. H. Berger, 1975)

%

Рис. 14.57. Параметры, влияющие на распространение карбоната кальция в осадках экваториальной области Тихого океана с увеличением глубины. 1 — насыщение кальцитом (%); 2 — (скорость растворения/скорость поступления ) × 100;

3 — содержание СаСО3 в осадках рассчитанное; 4 — содержание СаСО3 в осадках наблюдаемое (по Tj H. Van Andel et al, 1975)

Соседние файлы в папке учебники