Скачиваний:
11
Добавлен:
16.05.2021
Размер:
130.65 Кб
Скачать

Лекция 3

Уровни напряжения в СЭЭС

Напряжение в СЭЭС определяет массогабаритные показатели ЭО, его надежность и опасность поражения электрическим током персонала. Развитие судовой электротехники показывает, что по мере увеличения мощности и протяженности кабельных линий наблюдался рост напряжений: до 20-х годов прошлого века применяли 100 В, позднее 220 В постоянного тока и 220 В, а затем 380 В – переменного.

Вес и габариты электрооборудования зависят от уровня напряжения в разной степени. Наиболее существенное влияние на массогабаритные показатели уровень напряжения оказывает на распределительные сети. Передача электроэнергии на судах в основном осуществляется с помощью кабелей. На участках небольшой длины и при больших токах используются шинопроводы. Сечение, а, следовательно, масса и габариты кабелей и кабельных трасс определяются главным образом значением тока.

Передаваемая мощность в трехфазных цепях переменного тока определяется:

- полная S = Uф Iф = (ВА);

- активная P = Uф Iфcos = (Вт);

- реактивная Q = Uф Iф sin = (вар);

где Uф, Iф– действующие значения фазных напряжений и токов; Uл, Iл – линейных токов и напряжений; cosj - коэффициент мощности.

Поэтому при заданном уровне напряжения с ростом мощности существенно увеличиваются масса и габариты кабельных трасс. Основным средством их уменьшения является повышение напряжения.

Пример:

Убедимся в правильности сделанного вывода на простом примере. Пусть имеется два потребителя с мощностями Р1=10 кВт и Р2=100 кВт, рассмотрим какое сечение проводов необходимо взять, чтобы передать им электроэнергию:

  1. при напряжении Uл= 380 В: токи будут I1=19 А, I2=190 А, а сечения жилы - S1=2,5 мм2, S2=120 мм2;

2) при напряжении Uл= 1000 В: токи будут I1=7,2 А, I2=72 А, а сечения жилы - S1=1,5 мм2, S2=25 мм2.

Данный пример показывает, что степень снижения массогабаритных показателей зависит не только от степени повышения напряжения, но и от мощности потребителя – чем больше мощность, тем выше эффект снижения.

Влияние уровня напряжения на массогабаритные показатели электрических машин зависит как от значения напряжения, так и от мощности агрегата. Для напряжений до 380 В массогабаритные показатели мало зависят от его значения. Повышение напряжения до 1000 В может привести к увеличению массы и габаритов синхронных генераторов из-за необходимости усиления электрической прочности изоляции. Однако чем мощнее машина, тем фактор увеличения тока начинает превалировать и высоковольтные машины получают преимущества в весах и габаритах по сравнению с низковольтными. К преимуществам высоковольтных машин также можно отнести то, что они легче управляются.

Массогабаритные показатели коммутационно-защитной аппаратуры на напряжения до 380 В одинаковы. Увеличение напряжения до 1000 В приводит к уменьшению их массы на » 25%.

Наиболее часто применяемым номинальным напряжением в СЭЭС является 380 В.

Переход на более высокие напряжения приводит к увеличению количества устанавливаемых трансформаторов. Это вызвано следующими причинами:

1. Отдельные виды электрооборудования технически не могут быть выполнены на повышенное напряжение, например, асинхронные двигатели (АД) мощностью 0,5…2 кВт;

2. Часть потребителей, таких как системы освещения, отопления, приборы и сети управления, по условиям безопасности не делают на повышенное напряжение.

Существующее оборудование рассчитывается на напряжение 500 В, кабели – до 1000 В. Переход на более высокое напряжение требуют разработки нового оборудования. В настоящее время повышенное напряжение используется в основном на судах технического флота.

Уровни частоты

Частота напряжения в СЭЭС отечественных судов принята равной 50 Гц. На судах где массогабаритные показатели являются решающими (суда с динамическими принципами поддержания) применяется 400 Гц.

Рассмотрим влияние повышения частоты на массогабаритные показатели ЭО.

Отметим вначале положительные стороны повышения частоты в СЭЭС:

1. Снижаются массогабаритные показатели генераторных агрегатов (га). Данное утверждение иллюстрируют параметры, представленные в табл. 2, и рис. 1.

Причиной этого являются:

· исключение редуктора при сочленении ПД и СГ. Частота вращения связана с электрической частотой следующим соотношением

2. Повышенная частота позволяет увеличить частоту вращения механизмов и электроприводов в 2…3 раза, что приводит к существенному уменьшению габаритов и массы агрегатов двигатель – механизм. Так переход от частоты вращения 3000 об/мин к частоте вращения 8000 об/мин дает снижение массы АД в 2,5…3,5 раза и габаритов в 2,5 раза (рис.2.3).

3. Улучшаются массогабаритные показатели трансформаторов, дросселей, магнитных усилителей. Убедимся в этом с помощью простых соотношений.

Реальное преимущество рассматриваемых видов оборудования на 400 Гц ниже. Это связано с тем, что магнитопроводы изготавливают из электропроводящего материала, в котором под действием переменного магнитного поля возникают микротоки – токи Фуко или вихревые токи. Электрическое сопротивление стали мало, а значит, вихревые токи могут достигать большого значения, что приводит к разогреву магнитопровода - потери в стали оценивают пропорциональными f1,3…1,5. Поэтому для сохранения теплового баланса в высокочастотном оборудовании снижают индукцию Вm 400 < Вm 50, плотность тока и стальные сердечники набирают из более тонких пластин: 50 Гц - толщина пластин 0,35 мм, 400 Гц – 0,08 мм. Сравнение существующего оборудования показывает, что в заданном объеме трансформатора .

4. Сокращается время переходных процессов. Рассмотрим это более подробно.

При увеличении частоты с 50 до 400 Гц и одновременном увеличении частоты вращения при той же мощности размеры генератора, периметр витка обмотки статора и число витков уменьшаются.

Проводимость, при прочих равных условиях, уменьшается пропорционально периметру витка. Активное сопротивление R уменьшается пропорционально уменьшению числа витков и уменьшению их периметра. Таким образом, постоянные времени уменьшаются приблизительно пропорционально уменьшению числа витков.

Следует отметить, что индуктивные сопротивления обмотки, определяемые , увеличиваются. Это происходит из-за того, что число витков обмотки статора уменьшается не прямо пропорционально увеличению частоты.

К недостаткам применения высокой частоты следует отнести:

1. Отсутствие унификации с береговой сетью;

2. Отсутствие серийного оборудования;

3. Увеличение потерь в кабелях.

Кабель имеет активное R и индуктивное Х сопротивления. Рассмотрим характер и причины их изменения при повышении частоты:

При прохождении переменного тока по проводнику в нем, из-за скин-эффекта и эффекта близости, происходит вытеснение тока к поверхности. Чем выше частота и чем толще проводник тем в большей степени проявляется неравномерность распределения тока по сечению проводника. Это приводит к уменьшению полезного сечения проводника и как следствие – увеличению сопротивления и потерь в нем.

Значение коэффициента пропорциональности зависит от частоты тока и количества жил в кабеле:

- 50 Гц к=1;

- 400 Гц: количество жил – 1 к=1, 25; количество жил 2,3 к=1, 45.

2. Х= ωL, т.е. Х400=8·Х50.

Соседние файлы в папке защита лабораторных