
- •2. Ускорение при плоском криволинейном движении. Нормальное и тангенсальное ускорения.
- •3. Кинематика вращения твёрдого тела вокруг закреплённой оси. Угол поворота. Угловая скорость. Угловое ускорение. Связь между линейной и угловой скоростью. Равноускоренное движение.
- •4. Законы Ньютона. Принцип относительности Галилея.
- •5. Упругие силы. Силы трения.
- •6. Закон всемирного тяготения. Сила тяжести. Вес тела. Состояние невесомости.
- •7. Импульс. Импульс силы. Закон сохранения импульса. Центр масс.
- •8. Механическая работа. Мощность. Энергия. Кинетическая энергия.
- •9. Поле сил. Консервативные силы. Потенциальная энергия. Связь между потенциальной энергией и силой.
- •10. Закон сохранения полной механической энергии частицы.
- •11. Закон сохранения энергии для системы невзаимодействующих частиц.
- •12. Взаимная потенциальная энергия частиц. Закон сохранения энергии системы частиц.
- •13. Энергия упругой деформации. Условия равновесия механической системы.
- •14. Момент импульса. Момент силы. Потенциальная энергия. Связь между потенциальной энергией и силой.
- •15. Вращение твёрдого тела вокруг закреплённой оси. Основное уравнение динамики вращательного движения твёрдого тела.
- •16. Момент инерции. Вычисление моментов инерции ноторых тел относительно оси симметрии (тонкий стержень, обруч, диск). Теорема Штейнера.
- •17. Момент инерции однородного тела вращения. Моменты инерции конуса, шара.
- •18. Кинетическая энергия вращающегося твёрдого тела вокруг закреплённой оси. Кинетическая энергия твёрдого тела при плоском движении.
- •19. Уравнения динамики твёрдого тела. Центр тяжести. Условия равновесия твёрдого тела.
- •20. Колебательное движение. Кинематика и динамика гармонических колебаний.
- •21. Кинетическая и потенциальная энергия гармонического колебания. Полная энергия гармонического колебания. Средние за период значения кинетической и потенциальной энергии.
- •22. Математический и физический маятники. Приведённая длина физического маятника. Центр качаний.
- •23. Сложение гармонических колебаний одного направления. Сложение взаимно перпендикулярных колебаний.
- •24. Затухающие колебания. Логарифмический декремент затухания. Добротность колебательной системы.
- •25. Вынужденные колебания. Явление резонанса. Резонансные кривые.
- •26. Основные понятия и исходные положения положения термодинамики. Обратимые и необратимые процессы. Круговые процессы (циклы).
- •27. Внутренняя энергия. Работа и теплота. Первое начало термодинамики.
- •28. Теплоёмкость. Молярная и удельная теплоёмкости. Связь между ними. Формула Майера.
- •29. Уравнение состояния идеального газа. Изотермический, изохорический и изобарический процессы и их уравнения. Графики этих процессов.
- •30. Адиабатический процесс. Уравнение Пуассона. Показатель адиабаты.
- •31. Политропические процессы. Уравнение политропы идеального газа. Показатель политропы.
- •32. Тепловые двигатели. К.П.Д. Теплового двигателя. Холодильный коэффицент. Различные формулировки второго начала термодинамики.
- •33. Цикл Карно. Первая теорема Карно. Вторая теорема Карно.
- •34. Рабочий цикл четырёхтактного двигателя внутреннего сгорания. К.П.Д. Цикла.
- •35. Рабочий цикл четырёхтактного двигателя внутреннего сгорания Дизеля. К.П.Д. Цикла.
- •36. Неравенство Клаузиуса. Равенство Клаузиуса. Энтропия. Изэнтропический процесс. Теорема Нернста(третье начало термодинамики).
- •37. Закон возрастания энтропии. Основное уравнение термодинамики.
- •38. Число степеней свободы механической системы. Поступательные, вращательные и колебательные степени свободы молекулы. Теорема о равнораспределении энергии по степеням свободы.
- •39. Классическая теория теплоёмкости идеальных газов.
- •40. Классическая теория теплоёмкости твёрдых тел (кристаллов). Закон Дюлонга и Пти.
- •41. Пространство скоростей. Функция распределения молекул по скоростям. Распределение Максвелла.
- •42. Распределение молекул по абсолютным значениям скоростей. Характерные скорости (наиболее вероятная, средняя, среднеквадратичная) в распределении Максвелла.
- •43. Барометрическая формула. Распределение Больцмана. Распределение Максвелла - Больцмана.
- •44. Энтропия и вероятность. Формула Больцмана. Макро- и микросостояния. Термодинамическая вероятность макросостояния (статистический вес).
5. Упругие силы. Силы трения.
Си́ла упру́гости— сила, возникающая при деформации тела и противодействующая этой деформации. В случае упругих деформаций является потенциальной. Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Сила упругости направлена противоположно смещению, перпендикулярно поверхности.
При малых упругих деформациях может быть приближённо описана законом Гука
F = − kΔx,
При увеличении величины деформации закон Гука перестаёт действовать, сила упругости начинает сложным образом зависеть от величины растяжения.
При ещё большей величине деформации зависимость силы упругости от величины расстяжения или сжатия становится гистерезисной — в теле происходят необратимые изменения.
Тре́ние — процесс взаимодействия твёрдых тел при их относительном движении (смещении) либо при движении твёрдого тела в газообразной или жидкой среде
Трение скольжения — сила, возникающая при поступательном перемещении одного из контактирующих/взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения;
Трение качения — момент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого и противодействующий вращению движущегося тела;
трение покоя — сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Она действует в направлении, противоположном направлению возможного движения.
По физике взаимодействия трение принято разделять на:
сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя.
жидкостное (вязкое), при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита), жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость
6. Закон всемирного тяготения. Сила тяжести. Вес тела. Состояние невесомости.
4 фундаментальных взаимодействия: гравитационное, эл-магн, ядерное, слабое(расп. Эл частиц)
Гравитационное
взаимодействие —
одно
из четырёх фундаментальных взаимодействий
в нашем мире. В рамках классической
механики, гравитационное взаимодействие
описывается законом
всемирного тяготения
Ньютона, который гласит, что сила
гравитационного притяжения между двумя
материальными точками массы m1
и m2,
разделёнными расстоянием R,
пропорциональна обеим массам и обратно
пропорциональна квадрату расстояния —
то
есть
Здесь G — гравитационная постоянная, равная примерно 6.6725* 10^-11 м³/(кг•с²).
Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность поля тяжести влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в поле тяжести часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.
Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это, тем не менее, очень важная сила во Вселенной. Для сравнения: полный электрический заряд этих тел равен нулю, так как вещество в целом электрически нейтрально.
Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.
Вес
в инерциальной системе отсчёта
совпадает
ссилой
тяжести и
пропорционален массе
и ускорению свободного падения
в
данной точке:
При
движении системы тело —
опора (или
подвес) относительно инерциальной
системы отсчёта c ускорением
вес
перестаёт совпадать с силой тяжести:
Вес — сила воздействия тела на опору (или другой вид крепления в случае подвешенных тел), возникающая в поле сил тяжести
На вес тела в жидкой или газообразной среде влияет также сила Архимеда, таким образом вес тела, погружённого в среду уменьшается на вес вытесненного объёма среды; в случае если плотность тела меньше плотности среды вес становится отрицательным (то есть на тело действует выталкивающая сила). Сила Архимеда может оказать влияние и на взвешивание с помощью рычажных весов, если сравниваются тела с различной плотностью.
Воздушный шар: после сбрасывания последнего мешка перед взлётом вес становится строго равным 0, после чего сила Архимеда становится больше силы тяжести и взаимодействие шара с опорой — поверхностью земли — исчезает
Невесо́мость — состояние, наблюдаемое нами, когда сила взаимодействия тела с опорой (вес тела), возникающая в связи с гравитационным притяжением, действием других массовых сил, в частности силы инерции, возникающей при ускоренном движении тела, отсутствует.
Довольно часто исчезновение веса путают с исчезновением гравитационного притяжения. Это не так. В качестве примера можно привести ситуацию на Международной космической станции (МКС). На высоте 350 километров (высота нахождения станции) ускорение свободного падения имеет значение 8,8 м/с², что всего лишь на 10 % меньше, чем на поверхности Земли. Состояние невесомости на МКС возникает за счёт движения по круговой орбите с первой космической скоростью.
Первая
космическая скорость:,
минимальная скорость, при которой тело,
движущееся горизонтально над поверхностью
планеты, не упадёт на неё, а будет
двигаться по круговой орбите.
Состояние
отсутствия веса (невесомость) наступает
при удалении тела от притягивающего
объекта, либо когда тело находится в
свободном падении, то есть
.