Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Mac OS.docx
Скачиваний:
6
Добавлен:
10.03.2021
Размер:
151.71 Кб
Скачать

Архитектура Mac OS

Систему, по-видимому, можно разделить на несколько подсистем, каждая из которых выполняет управление определенным видом ресурсов (памятью, задачами, файлами, средствами коммуникаций и т.д.). Подсистема состоит из нескольких Менеджеров, каждый их которых обеспечивает более высокий уровень абстракции ресурсов. Менеджеры более высокого уровня используют средства Менеджеров низкого уровня своей подсистемы, а также и других подсистем.

Управление памятью

При работе с реальной памятью Mac OS обеспечивает работу с адресным пространством размером 16 Мбайт (24-разрядный адрес). Разумеется, все адресное пространство не обязательно поддерживается реальной памятью, заполнение адресного пространства реальной памятью может быть фрагментировано.

Память в такой модели выделяется разделами. Нижняя часть памяти (от адреса 0) составляет системный раздел. В нем размещены глобальные переменные системы и системная куча. В системной куче выделяется память для буферов, системных структур данных и системных кодовых сегментов.

Каждому приложению выделяется раздел приложения. В разделе приложения содержится:

  • управляющая информация приложения, так называемый "мир A5" (A5 world);

  • стек приложения;

  • куча приложения.

"Мир A5" (название происходит от имени регистра микропроцессора M 68К, который используется для адресации) содержит:

  • глобальные переменные приложения;

  • глобальные переменные QuickDraw (подсистемы экранного отображения);

  • параметры приложения;

  • таблицу переходов.

Стек приложения используется для сохранения адресов возврата и выделения памяти для локальных переменных. В куче размещаются коды и данные приложения. Кроме того, приложению могут выделяться по запросу блоки памяти вне его раздела.

Память в куче выделяется блоками переменной длины. Блоки могут быть перемещаемыми или неперемещаемыми. Обращение к неперемещаемому блоку производится по прямому адресу. Обращение к перемещаемому блоку производится с применением косвенной адресации через, так называемый, главный блок указателей (master pointer block). Для каждого приложения система создает такой блок определенного по умолчанию размера, размер блока может быть увеличен самим приложением. Такой способ выделения памяти приводит к образованию "внешних дыр", которые могут уменьшать объем доступной для приложения памяти. Для борьбы с этим явлением система производит (при нехватке памяти) дефрагментацию кучи - переписывает в памяти все перемещаемые блоки таким образом, чтобы внешние дыры слились в одну свободную область в верхней части кучи. При переносе блоков корректируется главный блок указателей, таким образом, перенос остается прозрачным для приложения. Наличие в куче неперемещаемых блоков снижает эффективность сжатия кучи, поэтому система стремится разместить все перемещаемые блоки в нижней части кучи. Если при размещении перемещаемого блока оказывается, что то место в нижней части кучи, на которое он претендует, занято перемещаемым блоком, система переносит перемещаемый блок в другое место и освобождает место для неперемещаемого.

Введение в компьютеры фирмы Apple динамической трансляции адресов позволило перейти к 32-разрядному размеру адреса и, таким образом, обеспечивать виртуальное адресное пространство размером в 4 Гбайт.

В описанной выше модели реальной памяти, расширенной затем за счет динамической трансляции адресов, сложилась сегментная архитектура выполнения приложений, которую называют "классической" архитектурой 68K. Приложение в этой архитектуре состоит из сегментов размером до 32 Кбайт каждый. Сегментная архитектура поддерживается Менеджером Сегментов в составе Mac OS. Для каждого приложения автоматически создается и загружается при запуске Сегмент 0, остальные сегменты загружаются по требованию.

Связь между сегментами обеспечивается через таблицу переходов (jump table), которая размещается вместе с "миром A5". Таблица переходов содержит адреса входных точек в сегментах, таким образом, обращения к процедурам в других сегментах производятся через таблицу переходов. Сегменты размещаются в перемещаемых блоках памяти в куче приложения и, таким образом, могут быть перемещены в памяти с коррекцией содержимого таблицы переходов.