Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
уч.пособие 2013.doc
Скачиваний:
430
Добавлен:
09.02.2015
Размер:
11.89 Mб
Скачать

11.7. Параметры цифровых микросхем различных серий («логик»)

В настоящее время практически все цифровые элементы, а также их комбинации выпускаются в виде интегральных микросхем. При этом основные параметры цифровых элементов, изготовленных по разным технологиям (за рубежом употребляют понятие «разные логики») существенно различаются. В настоящее время наиболее распространены три технологии: транзисторно-транзисторная (ТТЛ, в зарубежной версии ТТL), комплементарная металл-окисел-полупроводниковая (КМОП или СМОS), а также эмиттерно-связанная (ЭСЛ). В некоторых учебных изданиях, в частности – китайских, цифровые микросхемы с ЭСЛ-логикой не упоминаются; возможно, это происходит из-за того, что схемы этого типа по многим параметрам уступают микросхемам с ТТЛ и КМОП логиками. Ниже приведена сводная таблица основных эксплуатационных параметров цифровых схем (табл. 11.4). Следует иметь ввиду, что в таблице приведены усредненные параметры по микросхемам различного назначения, а параметр «потребляемая мощность» усреднен еще и по режимам работы (с различным токопотреблением).

Табл. 11.4

Параметр

Тип логики

ТТЛ

ЭСЛ

КМОП

Напряжение питания Е, В

+ 5

− 5,2

+ 3…5

Уровень U1, В

+ 2,4

− 0,9

Е

Уровень U0, В

+ 0,4

− 0,6

≈0

Быстродействие (время переключения), нс

20

2,9

50

Потребляемая мощность, мВт

22

35

0,1

Коэффициент разветвления

10

15

50

Как видно из таблицы, по большинству параметров наиболее предпочтительны микросхемы на базе КМОП-логики: это объясняется тем, что внутри микросхем этого типа располагаются полевые транзисторы, обладающие огромным входным сопротивлением по затвору (см. п. 2.7). Однако КМОП-элементы уступают по быстродействию. По этому важнейшему параметру наилучшими являются ЭСЛ-микросхемы, что вообще оправдывает их существование – все остальные параметры у этого типа схем плохие. Следует обратить внимание на полярность уровней логического нуля и логической единицы у ЭСЛ-схем. ТТЛ-схемы имеют средние значения параметров и именно этим объясняется их наибольшее распространение. Применяя этот тип микросхем, разработчики сложных цифровых электронных устройств находят компромисс при оптимизации эксплуатационных характеристик.

11.8. Двоичный счетчик

Триггеры – схемы, которые с точки зрения «булевой» алгебры, фиксируют значение всего одного разряда двоичного числа. Необходимость такого «счета до двух» возникает весьма редко. Поэтому для фиксации многоразрядных двоичных чисел применяют более сложные схемы, являющиеся комбинациями нескольких триггеров – двоичные счетчики.

Схема трехразрядного двоичного счетчика прямого счета приведена на рис.11.13. Как видно, счетчик представляет собой последовательное («каскадное») соединение Т-триггеров. Количество этих триггеров равно разрядности двоичного числа.

Рис.11.13

Принцип действия счетчика поясняют диаграммы напряжение в точках схемы, приведенные на рис.11.14. Из рисунка видно, как десятичные номера импульсов, поступающих на вход схемы превращаются в эквивалентные двоичные числа, записанные в параллельном коде (параллельным называется представление многоразрядного числа, при котором каждому разряду числа соответствует своя «шина», т. е. провод).

Рис.11.14

Перед началом счета все триггера необходимо обнулить, подав на счетчик прежде всего импульс «установка нуля» (уст.0) на R-входы. Следует обратить внимание на соединение триггеров: на Т-вход следующего триггера поступает переключающий сигнал с инверсного () выхода предыдущего. Такое соединение применено с учетом схемотехнических решений во входных цепях триггеров (см. п. 11.4).

Чаще всего переключается триггер, непосредственно получающий сигналы с генератора импульсов. Именно на его Главном выходе формируется младший разряд двоичного числа. Старший разряд формируется на шине, соединенной с Q-выходом максимально удаленного от входа триггера.

Если не предпринять дополнительных мер, то счетчик досчитает до седьмого импульса, при этом на выходах триггеров будет сформирован код 111 – и далее восьмым импульсом обнулится, а затем возобновит счет. При необходимости остановить счет по заданному номеру импульса схему счетчика надо дополнить (рис.11.15.) – главные и инверсные выходы триггеров соединить со схемой И так, чтобы при достижении нужной комбинации на ее выходе образовалась бы логическая единица, которая обнулит все триггеры. После этого счет импульсов возобновится, но уже не с восьмого импульса.

Рис.11.15