
- •Электроника
- •Основные понятия электроники
- •1.1. Электронная цепь (схема)
- •1.2. Классификация электронных схем
- •Элементная база электроники
- •2.1. Полупроводниковые материалы
- •2.2. Электронно-дырочный переход
- •2.3. Полупроводниковый диод
- •2.4. Биполярный транзистор
- •2.5. Полевой транзистор.
- •2.6. Тиристоры и динисторы
- •2.7. Фотоэлектронные элементы
- •2.8. Светоиспускающие элементы
- •2.9. Терморезисторы
- •2.10. Варисторы
- •2.11. Электронные лампы
- •Фильтры
- •3.1. Пассивная дифференцирующая цепь
- •3.2. Пассивная интегрирующая цепь
- •3.3. Полосовой фильтр
- •3.4. Режекторный фильтр
- •3.5. Кварцевый фильтр
- •4. Линии задержки
- •4.1. Цепочечные линии задержки
- •4.2. Коаксиальные линии задержки
- •4.3. Ультразвуковые линии задержки
- •5. Усилители на транзисторах
- •5.1. Схема с общим эмиттером
- •5.2. Схема с общим коллектором
- •5.3. Схема с общей базой
- •5.4. Сравнение схем включения транзисторов и их применение
- •5.5. Дифференциальный усилитель
- •5.6. Иные схемы усилителей на биполярных транзисторах
- •6. Операционные усилители
- •6.1. Основные свойства оу
- •6.2. Инвертирующий усилитель на оу
- •6.3. Неинвертирующий усилитель на оу
- •6.4. Повторитель на операционном усилителе
- •6.5. Инвертирующий сумматор
- •6.6. Активная дифференцирующая цепь
- •6.7. Активная интегрирующая цепь
- •6.8. Логарифмический преобразователь
- •6.9. Антилогарифмический преобразователь
- •7. Компараторы
- •7.1. Двухвходовый компаратор
- •7.2. Одновходовый компаратор
- •7.3. Регенеративный компаратор
- •7.4. Нуль-детектор
- •8. Электронные ключи
- •9. Генераторы гармонических сигналов
- •9.4. Трехточечные генераторы
- •10. Генераторы импульсов
- •10.1. Ждущий мультивибратор (одновибратор) на оу
- •10.2. Автоколебательный мультивибратор на оу
- •10.3. Мультивибратор в режимах деления частоты и синхронизации
- •10.4. Транзисторный ждущий мультивибратор (одновибратор)
- •10.5. Транзисторный автоколебательный мультивибратор
- •10.6. Мультивибратор на динисторе
- •10.7. Блокинг-генератор
- •10.8. Формирователь импульсов на основе длинной линии
- •10.9. Генератор ударного возбуждения
- •10.10. Генераторы линейно изменяющегося напряжения
- •10.11. Генератор качающейся частоты
- •11. Основные цифровые схемы
- •11.1. Логические элементы
- •11.4. Счетный триггер
- •11.5. Синхронный триггер
- •11.6. Триггер задержки
- •11.7. Параметры цифровых микросхем различных серий («логик»)
- •11.8. Двоичный счетчик
- •11.9. Регистр
- •11.10. Мультиплексор и демультиплексор, кóдер
- •11.11. Цифроаналоговый преобразователь
- •11.12. Гсин на базе цап
- •11.13. Параллельный ацп
- •11.14. Последовательный ацп
- •12. Усилитель класса d
- •Список рекомендуемой литературы
- •Оглавление
- •Электроника
- •197376, С.-Петербург, ул. Проф. Попова, 5
2.2. Электронно-дырочный переход
Свойства большинства элементов электронных схем основаны на том, что в их составе имеются электронно-дырочные переходы (p–n-переходы). Электронно-дырочный переход образуется в том месте, где в составе базового полупроводника (например, кремния) соприкасаются области с донорной и акцепторной примесями. Физические процессы в p–n-переходе поясняет рис. 2.1.
|
Рис.2.1 |
С обеих сторон границы областей с разными примесями образуются противоположные по знаку пространственные заряды (рис. 2.1., б). Распределение плотности зарядов демонстрирует рис. 2.1., в. Пространственные заряды создают электрическое поле напряженностью Е, которое противодействует дальнейшей взаимной диффузии электронов и дырок. Это поле называют диффузионным Едиф (так как причиной его возникновения является взаимная диффузия электронов и дырок) или барьерным. Второе название поля связано с тем, что на участке между пространственными зарядами формируется разность потенциалов ∆φ = Едиф∙ d (потенциальный барьер), что поясняет рис. 2.1, г. Емкость обедненной зоны также часто называют барьерной Сбар, а сопротивление этого участка полупроводника – сопротивлением p–n-перехода Rпер.
Если к p–n-переходу приложить внешнее напряжение (или, что то же самое – внешнее электрическое поле) напряженностью Евнеш, то результат будет зависеть прежде всего от того, будут ли внутреннее диффузионное и внешнее поля сонаправлены или противоположны по направлению, а также от значения Евнеш. Если «плюс» внешнего поля приложить к p-области полупроводника, а «минус» - к n-области, то это стимулирует движение электронов и дырок через переход, диффузионное поле будет в значительной степени ослаблено внешним, потенциальный барьер понизится. Обедненная зона сузится, ее сопротивление станет малым. Барьерную емкость, значение которой увеличится, можно не учитывать, так как малое Rпер ее зашунтирует. Такое включение электронно-дырочного перехода называется прямым, а переход – открытым (отпертым).
При противоположном включении внешнего электрического поля электроны и дырки «отойдут» от границы вглубь своих областей, ширина обедненной зоны расширится, сопротивление перехода увеличится. Включение электронно-дырочного перехода, при котором Евнеш складывается с Едиф, называется обратным, а переход – закрытым (запертым).
Полностью закрыть p–n-переход (т. е. добиться полного прекращения электрического тока через него) нельзя из-за того, что для тока неосновных носителей полярность внешнего электрического поля, препятствующая движению основных носителей заряда, наоборот, является стимулирующей. Принципиальная невозможность запереть электронно-дырочный переход является главным недостатком полупроводниковых элементов.