
- •Электроника
- •Основные понятия электроники
- •1.1. Электронная цепь (схема)
- •1.2. Классификация электронных схем
- •Элементная база электроники
- •2.1. Полупроводниковые материалы
- •2.2. Электронно-дырочный переход
- •2.3. Полупроводниковый диод
- •2.4. Биполярный транзистор
- •2.5. Полевой транзистор.
- •2.6. Тиристоры и динисторы
- •2.7. Фотоэлектронные элементы
- •2.8. Светоиспускающие элементы
- •2.9. Терморезисторы
- •2.10. Варисторы
- •2.11. Электронные лампы
- •Фильтры
- •3.1. Пассивная дифференцирующая цепь
- •3.2. Пассивная интегрирующая цепь
- •3.3. Полосовой фильтр
- •3.4. Режекторный фильтр
- •3.5. Кварцевый фильтр
- •4. Линии задержки
- •4.1. Цепочечные линии задержки
- •4.2. Коаксиальные линии задержки
- •4.3. Ультразвуковые линии задержки
- •5. Усилители на транзисторах
- •5.1. Схема с общим эмиттером
- •5.2. Схема с общим коллектором
- •5.3. Схема с общей базой
- •5.4. Сравнение схем включения транзисторов и их применение
- •5.5. Дифференциальный усилитель
- •5.6. Иные схемы усилителей на биполярных транзисторах
- •6. Операционные усилители
- •6.1. Основные свойства оу
- •6.2. Инвертирующий усилитель на оу
- •6.3. Неинвертирующий усилитель на оу
- •6.4. Повторитель на операционном усилителе
- •6.5. Инвертирующий сумматор
- •6.6. Активная дифференцирующая цепь
- •6.7. Активная интегрирующая цепь
- •6.8. Логарифмический преобразователь
- •6.9. Антилогарифмический преобразователь
- •7. Компараторы
- •7.1. Двухвходовый компаратор
- •7.2. Одновходовый компаратор
- •7.3. Регенеративный компаратор
- •7.4. Нуль-детектор
- •8. Электронные ключи
- •9. Генераторы гармонических сигналов
- •9.4. Трехточечные генераторы
- •10. Генераторы импульсов
- •10.1. Ждущий мультивибратор (одновибратор) на оу
- •10.2. Автоколебательный мультивибратор на оу
- •10.3. Мультивибратор в режимах деления частоты и синхронизации
- •10.4. Транзисторный ждущий мультивибратор (одновибратор)
- •10.5. Транзисторный автоколебательный мультивибратор
- •10.6. Мультивибратор на динисторе
- •10.7. Блокинг-генератор
- •10.8. Формирователь импульсов на основе длинной линии
- •10.9. Генератор ударного возбуждения
- •10.10. Генераторы линейно изменяющегося напряжения
- •10.11. Генератор качающейся частоты
- •11. Основные цифровые схемы
- •11.1. Логические элементы
- •11.4. Счетный триггер
- •11.5. Синхронный триггер
- •11.6. Триггер задержки
- •11.7. Параметры цифровых микросхем различных серий («логик»)
- •11.8. Двоичный счетчик
- •11.9. Регистр
- •11.10. Мультиплексор и демультиплексор, кóдер
- •11.11. Цифроаналоговый преобразователь
- •11.12. Гсин на базе цап
- •11.13. Параллельный ацп
- •11.14. Последовательный ацп
- •12. Усилитель класса d
- •Список рекомендуемой литературы
- •Оглавление
- •Электроника
- •197376, С.-Петербург, ул. Проф. Попова, 5
11. Основные цифровые схемы
Главной особенностью цифровой схемотехники является использование двухуровневых сигналов. В аналоговой схемотехнике сигнал может принимать любое значение в пределах от минимального до максимального значения. В цифровых схемах он должен принимать одно из двух нормированных значений. Оба значения сигнала имеют одинаковую полярность, при этом одно значение близко к нулю вольт, а второе имеет значение порядка единиц вольт (по модулю). Малый сигнал принято называть сигналом (уровнем) логического нуля и обозначать U0 (это отнюдь не означает, что U показатель степени, равный нулю!). Большой сигнал называют сигналом (уровнем) логической единицы и обозначают U1. Нормированные значения U0 и U1 для разных типов выпускаемых промышленностью микросхем приведены ниже, в табл. 11.4 – легко увидеть, что они различаются не только количественно, но и полярностью.
Применение двухуровневых сигналов позволяет существенно повысить надежность функционирования электронных схем. В аналоговых схемах любое отличие значения сигнала от требуемого является ошибкой, которая может привести к тяжелым последствиям. Напротив, в цифровых схемах небольшое отклонение сигнала от номинала ошибкой не является, если не перейден порог Uпор между нулем и единицей, как правило равный
Uпор = 0,5(U0 + U1).
Например, в цифровой схеме приняты номинальные значения U0 = 0,5В, U1 =4,5В; тогда Uпор = 2,5 В. Если уровень U1 по каким-то причинам понизился до 2,55 В, т. е. остался выше порога, то электронное устройство все равно сработает правильно. Использование двухуровневых сигналов дает и второе преимущество – функционирование цифровых схем можно описать с помощью так называемой «булевой» алгебры – алгебры двоичных чисел. Само по себе двоичное счисление проигрывает традиционному десятичному, так как требует огромного количества разрядов (например, трехразрядное десятичное число 129 в двоичном варианте имеет 8 разрядов). Однако возможность применения «булевой» алгебры существенно облегчает проектирование сложных электронных схем. От близости электронных схем к математическому аппарату пошло и их название – «цифровые».
Третье преимущество цифровой схемотехники перед аналоговой - малая номенклатура простейших схем, комбинацией которых являются все более сложные электронные устройства. Если рассмотрению модулей аналоговых схем в данном пособии посвящено девять глав, и при этом за рамками остались некоторые относительно редко используемые схемы, то в цифровой схемотехнике таких модулей – всего четыре: три логических схемы (И, ИЛИ и НЕ) и триггер. Впрочем, иногда триггер с раздельными входами и счетный триггер считают разными элементарными схемами – тогда число модулей доходит до пяти.
Следует отметить и недостатки цифровой схемотехники. Если в процессе работы значение сигнала преодолевает порог, то это может иметь катастрофические последствия, поэтому разработчики электронных изделий затрачивают массу усилий на то, чтобы корректировать такие ошибки. Малая номенклатура элементарных схем при ручном проектировании электронных устройств из-за «однообразия пейзажа» вызывает ошибки в соединении входов и выходов схем, для преодоления которых приходится разрабатывать тестовые сигналы. При проектировании следует также помнить, что уровни U0 и U1 для разных типов выпускаемых промышленностью микросхем различаются не только количественно, но и полярностью, поэтому создание электронных устройств на смешанной базе требует введения схем согласования уровней.