
- •Электроника
- •Основные понятия электроники
- •1.1. Электронная цепь (схема)
- •1.2. Классификация электронных схем
- •Элементная база электроники
- •2.1. Полупроводниковые материалы
- •2.2. Электронно-дырочный переход
- •2.3. Полупроводниковый диод
- •2.4. Биполярный транзистор
- •2.5. Полевой транзистор.
- •2.6. Тиристоры и динисторы
- •2.7. Фотоэлектронные элементы
- •2.8. Светоиспускающие элементы
- •2.9. Терморезисторы
- •2.10. Варисторы
- •2.11. Электронные лампы
- •Фильтры
- •3.1. Пассивная дифференцирующая цепь
- •3.2. Пассивная интегрирующая цепь
- •3.3. Полосовой фильтр
- •3.4. Режекторный фильтр
- •3.5. Кварцевый фильтр
- •4. Линии задержки
- •4.1. Цепочечные линии задержки
- •4.2. Коаксиальные линии задержки
- •4.3. Ультразвуковые линии задержки
- •5. Усилители на транзисторах
- •5.1. Схема с общим эмиттером
- •5.2. Схема с общим коллектором
- •5.3. Схема с общей базой
- •5.4. Сравнение схем включения транзисторов и их применение
- •5.5. Дифференциальный усилитель
- •5.6. Иные схемы усилителей на биполярных транзисторах
- •6. Операционные усилители
- •6.1. Основные свойства оу
- •6.2. Инвертирующий усилитель на оу
- •6.3. Неинвертирующий усилитель на оу
- •6.4. Повторитель на операционном усилителе
- •6.5. Инвертирующий сумматор
- •6.6. Активная дифференцирующая цепь
- •6.7. Активная интегрирующая цепь
- •6.8. Логарифмический преобразователь
- •6.9. Антилогарифмический преобразователь
- •7. Компараторы
- •7.1. Двухвходовый компаратор
- •7.2. Одновходовый компаратор
- •7.3. Регенеративный компаратор
- •7.4. Нуль-детектор
- •8. Электронные ключи
- •9. Генераторы гармонических сигналов
- •9.4. Трехточечные генераторы
- •10. Генераторы импульсов
- •10.1. Ждущий мультивибратор (одновибратор) на оу
- •10.2. Автоколебательный мультивибратор на оу
- •10.3. Мультивибратор в режимах деления частоты и синхронизации
- •10.4. Транзисторный ждущий мультивибратор (одновибратор)
- •10.5. Транзисторный автоколебательный мультивибратор
- •10.6. Мультивибратор на динисторе
- •10.7. Блокинг-генератор
- •10.8. Формирователь импульсов на основе длинной линии
- •10.9. Генератор ударного возбуждения
- •10.10. Генераторы линейно изменяющегося напряжения
- •10.11. Генератор качающейся частоты
- •11. Основные цифровые схемы
- •11.1. Логические элементы
- •11.4. Счетный триггер
- •11.5. Синхронный триггер
- •11.6. Триггер задержки
- •11.7. Параметры цифровых микросхем различных серий («логик»)
- •11.8. Двоичный счетчик
- •11.9. Регистр
- •11.10. Мультиплексор и демультиплексор, кóдер
- •11.11. Цифроаналоговый преобразователь
- •11.12. Гсин на базе цап
- •11.13. Параллельный ацп
- •11.14. Последовательный ацп
- •12. Усилитель класса d
- •Список рекомендуемой литературы
- •Оглавление
- •Электроника
- •197376, С.-Петербург, ул. Проф. Попова, 5
10.6. Мультивибратор на динисторе
Схема автоколебательного мультивибратора на динисторе отличается простотой (рис. 10.14). Главный элемент схемы – динистор (неуправляемая четырехслойная полупроводниковая структура) имеет вольт-амперную характеристику, приведенную на рис. 2.9. Динистор открывается при превышении напряжением, приложенным между его анодом и катодом, некоторого уровня Uвкл.
|
Рис. 10.14 |
Важной особенностью схемы мультивибратора является выбор напряжения Е источника питания, при котором Е > Uвкл. Вначале периода динистор закрыт, ток Iд невелик, поэтому мал и выходной сигнал Uвых = IдR2. Происходит заряд конденсатора С через сопротивление R1 в направлении +Е. Когда напряжение на конденсаторе достигает Uвкл, динистор открывается и ток Iд резко возрастает, соответственно, возрастает и Uвых. Конденсатор при этом разряжается через R2, пока в результате снижения приложенного к динистору напряжения последний не закрывается.
Импульсы, формируемые мультивибратором на динисторе, имеют не совсем прямоугольную форму, так как ток и через открытый, и через закрытый динистор меняется в зависимости от приложенного к нему напряжения.
Для построения ЖМВ необходимо заменить динистор тиристором.
10.7. Блокинг-генератор
Блокинг-генератор (БГ) используют в качестве формирователя прямоугольных импульсов с большой скважностью Q, составляющей от десятков до сотен тысяч. В настоящее время применяют исключительно автоколебательные БГ, в то время как ждущие блокинг-генераторы практически прекратили свое существование. Схема автоколебательного БГ приведена на рис. 10.15. На рис. 10.16 изображены временные диаграммы напряжений и токов в точках схемы, поясняющие ее работу.
|
|
Рис. 10.15 |
Рис. 10.16 |
Большую часть периода транзистор закрыт, а конденсатор C медленно перезаряжается через огромное сопротивление RБ. На правой обкладке C от предыдущего состояния формирования импульса сохраняется «минус», который постепенно уменьшается. Именно отрицательное напряжение на обкладке конденсатора, соединенной с базой, и поддерживает транзистор в закрытом состоянии. Когда потенциал базы достигает нуля, транзистор открывается и появляется коллекторный ток, потенциал коллектора снижается. Этот ток течет через первичную обмотку W1 импульсного трансформатора, благодаря чему и в других обмотках появляется напряжение. Вторичная обмотка W2 включена по отношению к первичной встречно, поэтому при понижении потенциала коллектора на правом конце вторичной обмотки потенциал возрастает, через емкость он передается на базу транзистора, что приводит к стремительному лавинообразному открыванию транзистора (это называется прямым блокинг-процессом).
При открытом транзисторе C заряжается под действием напряжения во вторичной обмотке. Заряд происходит очень быстро, так как зарядная цепь состоит из низкоомного сопротивления обмотки и сопротивления rБЭ перехода эмиттер-база открытого транзистора. На левой обкладке конденсатора накапливаются положительные заряды, правая становится все более отрицательной. Когда потенциал левой обкладки опускается до нуля, транзистор начинает закрываться. Закрытие транзистора называется обратным блокинг-процессом и происходит столь же стремительно, что и открытие. Схема возвращается в исходное состояние.
Во время протекания через W1 коллекторного тока в третьей обмотке формируется выходной импульсный сигнал. Его скважность приблизительно равна Q = RБ/rБЭ. Цепь в составе диода и сопротивления RШ служит для устранения паразитных колебательных процессов и улучшения формы импульсов.