
- •Электроника
- •Основные понятия электроники
- •1.1. Электронная цепь (схема)
- •1.2. Классификация электронных схем
- •Элементная база электроники
- •2.1. Полупроводниковые материалы
- •2.2. Электронно-дырочный переход
- •2.3. Полупроводниковый диод
- •2.4. Биполярный транзистор
- •2.5. Полевой транзистор.
- •2.6. Тиристоры и динисторы
- •2.7. Фотоэлектронные элементы
- •2.8. Светоиспускающие элементы
- •2.9. Терморезисторы
- •2.10. Варисторы
- •2.11. Электронные лампы
- •Фильтры
- •3.1. Пассивная дифференцирующая цепь
- •3.2. Пассивная интегрирующая цепь
- •3.3. Полосовой фильтр
- •3.4. Режекторный фильтр
- •3.5. Кварцевый фильтр
- •4. Линии задержки
- •4.1. Цепочечные линии задержки
- •4.2. Коаксиальные линии задержки
- •4.3. Ультразвуковые линии задержки
- •5. Усилители на транзисторах
- •5.1. Схема с общим эмиттером
- •5.2. Схема с общим коллектором
- •5.3. Схема с общей базой
- •5.4. Сравнение схем включения транзисторов и их применение
- •5.5. Дифференциальный усилитель
- •5.6. Иные схемы усилителей на биполярных транзисторах
- •6. Операционные усилители
- •6.1. Основные свойства оу
- •6.2. Инвертирующий усилитель на оу
- •6.3. Неинвертирующий усилитель на оу
- •6.4. Повторитель на операционном усилителе
- •6.5. Инвертирующий сумматор
- •6.6. Активная дифференцирующая цепь
- •6.7. Активная интегрирующая цепь
- •6.8. Логарифмический преобразователь
- •6.9. Антилогарифмический преобразователь
- •7. Компараторы
- •7.1. Двухвходовый компаратор
- •7.2. Одновходовый компаратор
- •7.3. Регенеративный компаратор
- •7.4. Нуль-детектор
- •8. Электронные ключи
- •9. Генераторы гармонических сигналов
- •9.4. Трехточечные генераторы
- •10. Генераторы импульсов
- •10.1. Ждущий мультивибратор (одновибратор) на оу
- •10.2. Автоколебательный мультивибратор на оу
- •10.3. Мультивибратор в режимах деления частоты и синхронизации
- •10.4. Транзисторный ждущий мультивибратор (одновибратор)
- •10.5. Транзисторный автоколебательный мультивибратор
- •10.6. Мультивибратор на динисторе
- •10.7. Блокинг-генератор
- •10.8. Формирователь импульсов на основе длинной линии
- •10.9. Генератор ударного возбуждения
- •10.10. Генераторы линейно изменяющегося напряжения
- •10.11. Генератор качающейся частоты
- •11. Основные цифровые схемы
- •11.1. Логические элементы
- •11.4. Счетный триггер
- •11.5. Синхронный триггер
- •11.6. Триггер задержки
- •11.7. Параметры цифровых микросхем различных серий («логик»)
- •11.8. Двоичный счетчик
- •11.9. Регистр
- •11.10. Мультиплексор и демультиплексор, кóдер
- •11.11. Цифроаналоговый преобразователь
- •11.12. Гсин на базе цап
- •11.13. Параллельный ацп
- •11.14. Последовательный ацп
- •12. Усилитель класса d
- •Список рекомендуемой литературы
- •Оглавление
- •Электроника
- •197376, С.-Петербург, ул. Проф. Попова, 5
7.2. Одновходовый компаратор
Одновходовый компаратор предназначен для сравнения двух сигналов противоположной полярности по модулю. Его схема изображена на рис. 7.3. Поясняющий график приведен на рис. 7.4.
Для
подачи обоих сигналов используется
инвертирующий вход ОУ (сигналы поступают
на вход ОУ через делитель, состоящий
обычно из одинаковых сопротивлений; в
результате напряжение =
(Uвx1
+
Uвx2)
/ 2), обратной
связи нет.
Выходной
сигнал принимает значения
±Е,
которые
меняются скачком в моменты, когда
меняется знак
.
Очевидно,
что смена знака
возможна
только при разных знаках Uвx1
и
Uвx2.
|
|
Рис. 7.3 |
Рис. 7.4 |
Разумеется, реальный одновходовый компаратор отличается по своим свойствам от идеального точно так же, как различаются идеальный и реальный двухвходовые компараторы. На нижнем графике на рис. 7.4 сплошной линией показана зависимость выходного сигнала идеального компаратора, штриховой линией – на выходе реального компаратора.
7.3. Регенеративный компаратор
Регенеративный
компаратор обеспечивает сравнение
входного сигнала с долей выходного.
Эта схема редко применяется сама по
себе, но зато является необходимой
частью мультивибраторов (на ОУ) –
генераторов прямоугольных импульсов.
Схема изображена
на рис. 7.5.
|
|
Рис. 7.5 |
Рис. 7.6 |

Допустим, что входной сигнал меняет свое значение от отрицательного к положительному. На выходе схемы вначале +Е, значит на неинвертирующем входе +γЕ. Пока на инвертирующем входе напряжение меньше +γЕ, компаратор не переключается – даже при смене полярности входного сигнала. Только при Uвx > +γЕ происходит срабатывание схемы и на выходе устанавливается –Е. При изменении входного сигнала в обратную сторону – от «плюса» к «минусу» на неинвертирующем входе исходно установлено –γЕ, поэтому компаратор переключается при этом значении сигнала. Зависимость Uвыx от Uвx отдаленно напоминает петлю гистерезиса у ферромагнетиков и сегнетоэлектриков, поэтому тоже получила название гистерезисной.
7.4. Нуль-детектор
В схемотехнике одной из задач является определение моментов времени, при которых сигнал произвольной формы равен нулю («выделение нуля»). Для этого используется схема, называемая нуль-детектором или нуль-компаратором. Схема нуль-детектора на ОУ приведена на рис. 7.7. Она содержит операционный усилитель, на инвертирующий вход которого подается входной сигнал, и цепь обратной связи в виде диодного моста VD1 – VD4 и двух дополнительных источников постоянных напряжений –U0 и +U0 (–U0 = +U0 <E). Получение напряжений –U0 и +U0 («порогов») не представляет технических трудностей, так как для этого можно использовать шины питания ОУ ±Е, соединив их высокоомным делителем.
В нуль-детекторе используют инвертирующее включение ОУ и охватывают его коммутируемой обратной связью (рис. 7.8).
|
Рис. 7.8 |
Схема работает в трех режимах, зависящих от соотношения Uвx с –U0 и +U0: в двух режимах диоды моста частично закрыты, а частично открыты, причем таким образом, что связь выхода ОУ со входом разрывается и эквивалентное сопротивление цепи обратной связи Roc . В третьем режиме все диоды открыты, выход ОУ накоротко соединен со входом, таким образом, ОУ как бы охвачен цепью обратной связи и Roc = 0. Эквивалентные схемы нуль-детектора в разных режимах приведены на рис. 7.9.
|
Рис. 7.7 |
1. При Uвx < –U0 на выходе ОУ из-за огромного значения КОУ образуется сигнал Uвыx = +Е; при этом диод VD1 открыт (так как Uвx < +U0), диод VD4 также открыт (так как –U0 < +E). Но диод VD3 закрыт (так как Uвx < –U0), закрыт и диод VD2 (так как +U0 < +E) – обратная связь разорвана.
2. При –U < Uвx < +U0 открываются диоды VD1 и VD2, и так как |–U0| = = +U0, то на инвертирующем входе сигнал приобретает значение Uвx ОУ = = (+U0 – U0)/2 = 0 (разность сигналов Uвx – Uвx ОУ = Uвx гасится на сопротивлении R, а сопротивления R1 и R2 исключают короткое замыкание источников дополнительных напряжений друг на друга). При Uвx ОУ = 0 независимо от значения KОУ Uвыx = 0, тогда открыты и диоды VD3 и VD4. Обратная связь представляет собой короткое замыкание (если пренебречь небольшими внутренними сопротивлениями открытых диодов).
|
Рис. 7.9 |
3. При Uвx > +U0 на выходе ОУ напряжение равно Uвыx = –Е, открыты диоды VD2 и VD3, закрыты VD1 и VD4 (режим, «с точностью до наоборот» соответствующий режиму 1).
Хотя в ходе обсуждения уже установлено, что при входных сигналах, близких к нулю (уровни +U0 и –U0 можно задать малыми), на выходе нуль-детектора сигнал равен нулю, а во всех остальных случаях – предельным уровням ±Е, но отметим, что к этому же результату можно прийти, и пользуясь универсальной формулой для инвертирующего включения ОУ: KU = – Zoc/Zвх.
В данном случае Zвx = R = const, а в режимах 1 и 3 равно Zoc = , тогда KU = −. Значит, Uвыx = –Е при положительном Uвx и Uвыx = +Е при отрицательном Uвx. В режиме 2 Zoc = 0, т. е. КU = 0 и Uвыx = 0. Диодный мост выполняет функцию ключа, управляемого входным сигналом.
|
|
Рис. 7.10 |
Рис. 7.11 |
На рис. 7.10 приведена передаточная характеристика нуль-детектора, на рис. 7.11 показано изменение формы сигнала при его прохождении через нуль-детектор. Если на неинвертирующий вход ОУ подать некоторое постоянное напряжение Uсм, то нуль-детектор будет иметь Uвыx = 0 при Uвx, близких к Uсм.