Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ресурсосбережение

.pdf
Скачиваний:
6
Добавлен:
01.02.2021
Размер:
1.27 Mб
Скачать

СПБГУАП группа 4736 https://new.guap.ru/i03/contacts

Введение

Газы в технике, применяются главным образом в качестве топлива;

сырья для химической промышленности: химических агентов при сварке,

газовой химико-термической обработке металлов, создании инертной или специальной атмосферы, в некоторых биохимических процессах и др.;

теплоносителей; рабочего тела для выполнения механической работы

(огнестрельное оружие, реактивные двигатели и снаряды, газовые турбины,

парогазовые установки, пневмотранспорт и др.): физической среды для газового разряда (в газоразрядных трубках и др. приборах).

Рассмотрим ближе применение отходящих дымовых газов.

газ дымовой тепло рекуператор

СПБГУАП группа 4736 https://new.guap.ru/i03/contacts

1.Общие сведения

Дымовые газы - продукты горения топлива органического происхождения, отходящие из рабочего пространства отапливаемых металлургических агрегатов.

Отходящие газы (вторичные энергетические ресурсы) - газы,

образующиеся в результате сжигания топлива, а также технологических процессов, покидающие печь или агрегат.

Использование физического тепла отходящими газами определяется их количеством, составом, теплоемкостью и температурой. Наиболее высокая температура отходящих газов кислородных конвертеров (1600-1800 °С),

наиболее низкая - температура отходящих газов воздухонагревателей доменных печей (250-400 °С). Использование тепла отходящих газов организуется разными способами. При регенеративном или замкнутом охлаждении тепло отходящих газов используется для непосредственного повышения экономичности технологического процесса (нагрев регенераторов или рекуператоров, шихты или технологического продукта и т. п.). Если в результате регенеративного охлаждения используется не все тепло отходящих газов, то применяют котлы-утилизаторы. Физическое тепло отходящие газы используют также для выработки электроэнергии во встроенных газотурбинных установках. Содержащиеся в отходящие газы колошниковая пыль доменного газа, оксиды железа в газах мартеновских печей и кислородных конвертеров улавливаются на установках газоочистки и в качестве оборотного продукта возвращаются в технологический процесс.

. Регенераторы и рекуператоры для нагрева воздуха и газа

Как было указано выше, подогрев воздуха и газа осуществляется в регенераторах или рекуператорах путем использования тепла дымовых газов,

СПБГУАП группа 4736 https://new.guap.ru/i03/contacts

уходящих из рабочих камер печей. Регенераторы применяются в мартеновских сталеплавильных печах, в которых подогрев воздуха и газа доходит до 1000 - 1200°. Принцип работы регенераторов заключается в попеременном нагреве двух теплоемких кирпичных насадок (решеток)

газами, выходящими из рабочей камеры печи, с последующим пропуском через нагретую насадку подогреваемого газа или воздуха. Подогрев газа или воздуха в регенераторах связан с переключением последних то на нагрев, то на охлаждение. Это требует периодических перемен направления движения пламени в рабочей камере печи, что вызывает необходимость переключения топочных устройств; таким образом, весь процесс работы печи становится реверсивным. Это усложняет конструкцию печи и удорожает ее эксплуатацию, но способствует равномерному распределению температур в рабочем пространстве печи.

Принцип работы рекуператора представляющего собой поверхностный теплообменник, состоит в непрерывной передаче тепла, дымовых газов,

уходящих из рабочей камеры печи, нагреваемому воздуху или газообразному топливу.

Рекуператор характеризуется непрерывным движением газов в одном направлении, что сильно упрощает конструкцию печей и удешевляет строительство и эксплуатацию.

На рис. 1 показан распространенный керамический рекуператор, в

котором трубы составляются из восьмигранных керамических элементов, а

пространство между трубами перекрыто фасонными плитками. Внутри труб движутся дымовые газы, а снаружи (в поперечном направлении) -

нагреваемый воздух. Толщина стенок труб составляет 13 - 16 мм и представляет значительное термическое сопротивление. Коэффициент теплопередачи (отнесенный к воздушной поверхности) составляет 6 - 8

вт/(м2∙град). Элементы керамических рекуператоров изготовляются из шамотной или из какой-либо другой более теплопроводной огнеупорной массы с последующим обжигом. Преимуществами керамических

СПБГУАП группа 4736 https://new.guap.ru/i03/contacts

рекуператоров являются их высокая огнеупорность и хорошая термическая стойкость - материал не портится при пропуске через рекуператор дымовых газов с очень высокой температурой.

Рис. 1. Трубчатый керамический рекуператор.

- нагретый воздух; 2 - дымовые газы; 3 - холодный воздух; 4 -

керамические трубы; 5 - перегородки.

К недостаткам керамических рекуператоров относятся их малая плотность, большая теплоемкость, плохая теплопередача от дымовых газов к воздуху и расстройство соединений элементов от сотрясений и перекосов.

Эти недостатки сильно ограничивают распространение керамических рекуператоров, и они применяются лишь в непрерывно действующих печах,

установленных в цехах, где нет механизмов ударного действия (например,

паровых молотов).

Наибольшее распространение получили металлические рекуператоры,

имеющие наиболее благоприятные перспективы развития. Экономическая целесообразность установки таких рекуператоров подтверждается быстрой окупаемостью затрат на сооружение (0,25 - 0,35 лет).

Металлические рекуператоры отличаются эффективной теплопередачей, малой теплоемкостью, а, следовательно, быстрой готовностью к нормальной работе и большой плотностью. Элементы металлических рекуператоров изготовляются из различных металлов в зависимости от рабочей температуры материала и состава дымовых газов,

СПБГУАП группа 4736 https://new.guap.ru/i03/contacts

проходящих через рекуператор. Простые черные металлы - углеродистая сталь и литейный серый чугун - начинают интенсивно окисляться при невысоких температурах (500 °С), и поэтому для изготовления рекуператоров применяются жаростойкие чугун и сталь, в состав которых входят в качестве легирующих добавок никель, хром, кремний, алюминий, титан и др., которые повышают сопротивляемость металла окалинообразованию.

Конструктивное решение низкотемпературного рекуператора с подогревом воздуха до 300 - 400 ˚С относительно просто. Создание же высокотемпературного рекуператора для подогрева воздуха и газообразного топлива до 700 - 900 °С представляет серьезную техническую задачу, пока еще полностью не решенную. Сложность ее заключается в обеспечении надежной работы рекуператоров в течение длительной эксплуатации при использовании дымовых газов с высокой температурой, несущих взвешенные твердые частицы золы, сажистого углерода, шихты и т. д., что вызывает абразивный износ. При выпадении этих частиц из потока поверхность нагрева рекуператора со стороны газов загрязняется. При запыленном воздухе поверхность нагрева загрязняется и со стороны воздуха.

Отдельные трубки трубных пучков рекуператоров, заделанные в трубные доски, работают по ходу газов в разных температурных условиях, по-разному нагреваются и расширяются.

Это различие в расширении труб требует различной их компенсации,

что трудно осуществить. На рис. 2 показана удачная конструкция трубчатого рекуператора, поверхность нагрева которого состоит из свободно висящих петель, вваренных в коллекторы (коробки). Рекуператор состоит из двух секций, через которые проходит последовательно воздух навстречу дымовым газам, движущимся поперек трубных пучков. Петлеобразный рекуператор имеет хорошую компенсацию тепловых расширений, что является очень важным условием надежной работы.

СПБГУАП группа 4736 https://new.guap.ru/i03/contacts

Рис. 2. Трубчатый петлеобразный рекуператор для установки на борове

(может быть установлен и на своде печи).

На рис. 3 изображена принципиальная схема высокотемпературного радиационного щелевого рекуператора, состоящего из двух стальных цилиндров, образующих концентрический зазор, по которому прогоняется с большой скоростью нагреваемый воздух. Внутри цилиндра движутся раскаленные дымовые газы, лучеиспускающие на поверхность внутреннего цилиндра. Трубчатый рекуператор более надежен в работе, чем щелевой.

Преимуществами радиационных рекуператоров являются: меньший расход жаростойкой стали за счет интенсивного лучистого теплообмена в условиях высоких температур газов (800 - 1200 °С) и меньшая чувствительность поверхности нагрева к загрязнениям. После радиационного рекуператора должен быть установлен конвективный рекуператор, так как температура газов после радиационного рекуператора еще очень высока.

СПБГУАП группа 4736 https://new.guap.ru/i03/contacts

Рис. 3. Схемы радиационных стальных рекуператоров.

а - кольцевой (щелевой); б - трубчатый с однорядным экраном.

На рис. 4 показан рекуператор с трубами двойной циркуляции.

Холодный воздух сначала проходит через внутренние трубы, а затем через концентрическое пространство труб поступает в коллектор горячего воздуха.

Внутренние трубы играют роль косвенной поверхности нагрева.

Трубчатые рекуператоры отличаются большой плотностью и поэтому могут применяться также для подогрева газообразного топлива.

Коэффициент теплопередачи может достигать 25 - 40 вт/(м2∙град).

Пластинчатые рекуператоры сложнее в изготовлении, менее плотны и долговечны и применяются редко. Рекуператоры, установленные отдельно от печи, занимают некоторое дополнительное место в помещении цеха, во многих случаях это препятствует их применению, однако часто удается удачно расположить рекуператоры на печи или под печью. [2,3]

Рис. 4. Стальной трубчатый рекуператор с двойной циркуляцией.

СПБГУАП группа 4736 https://new.guap.ru/i03/contacts

СПБГУАП группа 4736 https://new.guap.ru/i03/contacts

3. Котлы-утилизаторы

Тепло дымовых газов, уходящих из печей, кроме подогрева воздуха и газообразного топлива, может быть использовано в котлах-утилизаторах для выработки водяного пара. В то время как подогретые газ и воздух используются в самом печном агрегате, пар направляется внешним потребителям (для производственных и энергетических нужд).

Во всех случаях следует стремиться к наибольшей регенерации тепла,

т. е. к возвращению его в рабочее пространство печи в виде тепла нагретых компонентов горения (газообразного топлива и воздуха). В самом деле,

увеличение регенерации тепла ведет к сокращению расхода топлива и к интенсификации и улучшению технологического процесса. Однако наличие рекуператоров или регенераторов не всегда исключает возможность установки котлов-утилизаторов. В первую же очередь котлы-утилизаторы нашли применение в крупных печах с относительно высокой температурой отходящих дымовых газов: в мартеновских сталеплавильных печах, в

медеплавильных отражательных печах, во вращающихся печах для обжига цементного клинкера, при сухом способе производства цемента и т. д.

Рис. 5. Газотрубный котел-утилизатор ТКЗ типа КУ-40.

- пароперегреватель; 2 - трубная поверхность; 3 - дымосос.

СПБГУАП группа 4736 https://new.guap.ru/i03/contacts

Тепло дымовых газов, отходящих от регенераторов мартеновских печей с температурой 500 - 650 °С, используется в газотрубных котлах-

утилизаторах с естественной циркуляцией рабочего тела. Поверхность нагрева газотрубных котлов состоит из дымогарных труб, внутри которых проходят дымовые газы со скоростью примерно 20 м/сек. Тепло от газов к поверхности нагрева передается путем конвекции, а потому увеличение скорости повышает теплопередачу. Газотрубные котлы просты в эксплуатации, при монтаже не требуют обмуровки и каркасов и обладают высокой газоплотностью.

На рис. 5 показан газотрубный котел Таганрогского завода средней производительности Dср = 5,2 т/ч с расчетом на пропуск дымовых газов до

40000 м3/ч. Давление пара, вырабатываемого котлом, равно 0,8 Мн/м2;

температура 250 °С. Температура газов до котла 600 °С, за котлом 200 - 250

°С.

В котлах с принудительной циркуляцией поверхность нагрева составляется из змеевиков, расположение которых не ограничивается условиями естественной циркуляции, и поэтому такие котлы компактны.

Змеевиковые поверхности изготовляются из труб малого диаметра, например d = 32×3 мм, что облегчает вес котла. При многократной циркуляции, когда кратность циркуляции составляет 5 - 18, скорость воды в трубках значительна, не менее 1 м/сек, вследствие чего в змеевиках уменьшается выпадение из воды растворенных солей, а кристаллическая накипь смывается. Тем не менее котлы должны питаться водой, химически очищенной при помощи катионитовых фильтров и других способов водоподготовки, соответствующей нормам питательной воды для обычных паровых котлов.