
- •1. Транспорт лекарственных веществ системой крови и лимфы (макротранспорт) и через биологические мембраны (микротранспорт).
- •2. Метаболизм лекарственных веществ, его фазы, суть метаболических превращений в каждой фазе.
- •1) Метаболическая трансформация
- •2) Биосинтетические реакции
- •3. Биотрансформация как первая фаза метаболизма лекарственных веществ в организме. Ферменты первой фазы метаболизма.
- •1) Окислительно-восстановительные реакции
- •2)Гидролиз
- •4. Цитохром р-450, его свойства. Индукторы и ингибиторы цитохрома р-450
- •5. Конъюгация как вторая фаза метаболизма лекарственных веществ в
- •6. Механизм действия лекарственных веществ. Понятие мишени для лекарственных веществ. Роль мембранных белков и липидов в механизме действия лекарственных веществ.
- •8. Типы рецепторов плазматических мембран: рецепторы-ионные каналы, рецепторы, сопряженные с g-белками, рецепторы-протеинкиназы. Их участие в развитии ответа клетки на лекарственные вещества.
- •9. Вторичные мессенджеры. Образование и деградация. Их роль в развитии ответа клетки на лекарственные вещества.
- •10. Внутриклеточные рецепторы. Их участие в ответе клетки на лекарственные вещества.
- •11. Биохимия холинергического синапса. Биосинтез, депонирование и выброс ацетилхолина, регуляторы этих процессов.
- •12. Гидролиз ацетилхолина на холинэстеразе, его механизм. Ингибиторы холинэстеразы, их типы. Реактиваторы холинэстеразы.
- •13. Холинэстеразы, их типы, локализация. Строение и функционирование ацетилхолинэстеразы.
- •Строение
- •Механизм действия
- •16. Катехоламины, их представители, особенности химической структуры, их функции в организме.
- •17. Биохимия адренергического синапса. Депонирование, выделение и обратный захват норадреналина. Регуляторы этих стадий.
- •18. Биосинтез катехоламинов, их деградация. Регуляция этих процессов.
- •19. Адренорецепторы, их типы и распределение в организме. Механизмы трансмембранной передачи сигнала, опосредованные адренорецепторами.
- •1. Ионотропные гамк-рецепторы
- •23. Биохимия глицина, как тормозногонейромедиатора. Глициновые рецепторы. Транспортные системы для глицина и других аминокислот.
- •2)Глутатионовая система транспорта
- •25. Роль гистамина в биохимии аллергических реакций. Рецепторы гистамина, их типы, агонисты и антагонисты.
- •27. Биохимия рецепторов серотонина, типы и распределение серотониновых рецепторов в организме.
- •28. Эндогенные опиоиды, их виды. Биохимия опиоидных рецепторов, их типы и участие в формировании реакций на наркотические анальгетики. Агонисты и антагонисты опиоидных рецепторов.
- •31. Биосинтез и метаболизм простагландинов. Циклооксигеназа, ее разновидности и ингибиторы. Ингибиторы синтеза простагландинов, тромбоксансинтетазы, липоксигеназы.
- •32.Белково-пептидные гормоны. Биосинтез и секреция белково-пептидных гормонов. Их механизм действия на эффекторные клетки.
- •33. Биохимия гормонов гипоталамуса. Соматокринин, соматостатин, рилизинг-факторы тиреотропного, кортикотропного и гонадотропного гормонов. Их роль в функционировании организма.
- •1. Гормон роста, пролактин
- •2. Тиреотропин, лютеинизирующий гормон и фолликулостимулирующий гормон
- •3. Группа гормонов, образующихся из проопиомеланокортина
- •4. Гормоны задней доли гипофиза
- •35.Тиреокальцитонин и паратгормон. Биосинтез и его регуляция. Основные биохимические эффекты.
- •36. Гормоны поджелудочной железы. Глюкагон и инсулин. Их биологическая роль. Биохимический механизм действия инсулина. Рецепторы инсулина, их строение и функционирование.
- •Механизм действия инсулина
- •Активация инсулинового рецептора
- •2. Реакции, связанные с активностью ферментов map-киназ – в целом управляют активностью хроматина (медленные и очень медленные эффекты инсулина).
- •Два пути реализации эффектов инсулина Реакции, связанные с активностью фосфатидилинозитол-3-киназы
- •Действие фосфатидилинозитолдифосфат-3-киназы на фосфатидилинозитол-4,5-дифосфат Мишени и эффекты
- •Инактивация инсулина
- •Глутатион-инсулин-трансгидрогеназа, которая восстанавливает дисульфидные связи между цепями а и в, в результате чего гормон распадается.
- •Инсулиназа (инсулин-протеиназа), гидролизующая инсулин до аминокислот.
- •Патология Гипофункция
- •37. Биохимия углеводного обмена. Роль углеводов в образовании макроэргов и гликозилировании белков.
- •Регуляция синтеза и секреции
- •Механизм действия - цитозольный
- •Мишени и эффекты
- •Инактивация тиреоидных гормонов
- •42. Липиды, их биологическая роль и локализация в организме. Классификация липидов по химическому строению. Биосинтез холестерола, жирных кислот, триглицеридов: фармакологическая регуляция.
- •Биосинтез холестерола
- •4. Обрыв цепи.
- •44.Обмен фосфолипидов и их роль в рецепторных механизмах действия лекарственных веществ.
- •Реакции синтеза фосфолипидов с использованием фосфатидной кислоты
- •3 Путь – обратное превращение
- •45. Обмен жирных кислот и их роль в механизме действия лекарственных средств.
- •Синтез жирных кислот
- •Образование ацетил-sКоА из лимонной кислоты
- •Образование малонил-sКоА из ацетил-sКоА
- •Активные группы синтазы жирных кислот
- •Реакции синтеза жирных кислот Окисление жирных кислот (β-окисление)
- •Элементарная схема β-окисления
- •Этапы окисления жирных кислот
- •Реакция активации жирной кислоты
- •Карнитин-зависимый транспорт жирных кислот в митохондрию
- •Последовательность реакций β-окисления жирных кислот
- •46. Биохимия свертывающей системы крови: ферменты принимающие участие в коагуляции и фибринолизе, их фармакологическая регуляция.
- •1. Превращание фибриногена в фибрин-мономер.
- •47. Ферменты, принимающие участие в метаболизме эндогенных низкомолекулярных веществ и ксенобиотиков.
- •48. Повышение активности лекарственных веществ в результате реакции биотрансформации.
- •1)Повышение активности лекарственных веществ
- •2)Образование активного метаболита из неактивного вещества-пролекарства
- •49. Образование токсических продуктов лекарственных веществ в результате биотрансформации
- •50. Кофакторы и витамины, принимающие участие в метаболизме аминокислот и нейромедиаторов.
Реакция активации жирной кислоты
2. Ацил-SКоА не способен проходить через митохондриальную мембрану, поэтому существует способ переноса жирной кислоты в комплексе с витаминоподобным веществом карнитином (витамин В11). На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I.
Карнитин-зависимый транспорт жирных кислот в митохондрию
Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы. Во внутриутробном периоде и в первые годы жизни значение карнитина для организма чрезвычайно велико. Энергообеспечение нервной системы детского организма и, в частности, головного мозга осуществляется за счет двух параллельных процессов: карнитин-зависимого окисления жирных кислот и аэробного окисления глюкозы. Карнитин необходим для роста головного и спинного мозга, для взаимодействия всех отделов нервной системы, ответственных за движение и взаимодействие мышц. Существуют исследования, связывающие с недостатком карнитина детский церебральный паралич и феномен "смерти в колыбели".
Дети раннего возраста, недоношенные и дети с малой массой особенно чувствительны к недостаточности карнитина. Эндогенные запасы у них быстро истощаются при различных стрессовых ситуациях (инфекционные заболевания, желудочно-кишечные расстройства, нарушения вскармливания). Биосинтез карнитина недостаточен, а поступление с обычными пищевыми продуктами неспособно поддержать достаточный уровень в крови и тканях.
3. После связывания с карнитином жирная кислота переносится через внутреннюю митохондриальную мембрану транслоказой. На внутренней стороне этой мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-SКоА, который вступает на путь β-окисления.
4. Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА. К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.
Последовательность реакций β-окисления жирных кислот
Роль в механизме действия лекарственных средств
ЖК являются источником энергии для реакций биотрансформации;
они являются предшественниками эйкозаноидов. Эйкозаноиды это 1-воспаление и НПВС, ГК. 2- агрегация тромбоксаны простациклины - дезагреганты 3. Препараты простагландинов мизопростол, динопрост, ксалатан. 4 - аспириновая астма и блокаторы лейкотриеновых рецепторов. 5- Ульцерогеный эффект НПВС, ПГ в секреции;
экстракты фосфолипидов сои - эссенциале и др;
Фосфолипаза А2 катализирует гидролиз эфирной связи в положении 2, образуются свободная жирная кислота и лизофосфолипид;
Фосфолипазы C (PLC) – фосфодиэстеразы, которые расщепляют глицерофосфатную связь с образованием диацилглицерина и фосфат-содержащей полярной группы. Она сопряжена с джи-белками многих рецепторов, начиная с альфа1, синтезирует из липидов вторичные посредники ДАГ и инозитолтрифосфат, меняется уровень кальция. ЖК - это компонент фосфолипидов, которые расщепляет ФЛС.
являются частью мембраны, а она — носитель ферментов (напр АХЭ, Р450, МАО), также участвует в биотранспорте, барьерная функция,
входят в липидное окружение ионнных каналов - действие наркозных средств;
статины и ингибиторы всасывани, гипохолестеринемичееское.