
- •1. Транспорт лекарственных веществ системой крови и лимфы (макротранспорт) и через биологические мембраны (микротранспорт).
- •2. Метаболизм лекарственных веществ, его фазы, суть метаболических превращений в каждой фазе.
- •1) Метаболическая трансформация
- •2) Биосинтетические реакции
- •3. Биотрансформация как первая фаза метаболизма лекарственных веществ в организме. Ферменты первой фазы метаболизма.
- •1) Окислительно-восстановительные реакции
- •2)Гидролиз
- •4. Цитохром р-450, его свойства. Индукторы и ингибиторы цитохрома р-450
- •5. Конъюгация как вторая фаза метаболизма лекарственных веществ в
- •6. Механизм действия лекарственных веществ. Понятие мишени для лекарственных веществ. Роль мембранных белков и липидов в механизме действия лекарственных веществ.
- •8. Типы рецепторов плазматических мембран: рецепторы-ионные каналы, рецепторы, сопряженные с g-белками, рецепторы-протеинкиназы. Их участие в развитии ответа клетки на лекарственные вещества.
- •9. Вторичные мессенджеры. Образование и деградация. Их роль в развитии ответа клетки на лекарственные вещества.
- •10. Внутриклеточные рецепторы. Их участие в ответе клетки на лекарственные вещества.
- •11. Биохимия холинергического синапса. Биосинтез, депонирование и выброс ацетилхолина, регуляторы этих процессов.
- •12. Гидролиз ацетилхолина на холинэстеразе, его механизм. Ингибиторы холинэстеразы, их типы. Реактиваторы холинэстеразы.
- •13. Холинэстеразы, их типы, локализация. Строение и функционирование ацетилхолинэстеразы.
- •Строение
- •Механизм действия
- •16. Катехоламины, их представители, особенности химической структуры, их функции в организме.
- •17. Биохимия адренергического синапса. Депонирование, выделение и обратный захват норадреналина. Регуляторы этих стадий.
- •18. Биосинтез катехоламинов, их деградация. Регуляция этих процессов.
- •19. Адренорецепторы, их типы и распределение в организме. Механизмы трансмембранной передачи сигнала, опосредованные адренорецепторами.
- •1. Ионотропные гамк-рецепторы
- •23. Биохимия глицина, как тормозногонейромедиатора. Глициновые рецепторы. Транспортные системы для глицина и других аминокислот.
- •2)Глутатионовая система транспорта
- •25. Роль гистамина в биохимии аллергических реакций. Рецепторы гистамина, их типы, агонисты и антагонисты.
- •27. Биохимия рецепторов серотонина, типы и распределение серотониновых рецепторов в организме.
- •28. Эндогенные опиоиды, их виды. Биохимия опиоидных рецепторов, их типы и участие в формировании реакций на наркотические анальгетики. Агонисты и антагонисты опиоидных рецепторов.
- •31. Биосинтез и метаболизм простагландинов. Циклооксигеназа, ее разновидности и ингибиторы. Ингибиторы синтеза простагландинов, тромбоксансинтетазы, липоксигеназы.
- •32.Белково-пептидные гормоны. Биосинтез и секреция белково-пептидных гормонов. Их механизм действия на эффекторные клетки.
- •33. Биохимия гормонов гипоталамуса. Соматокринин, соматостатин, рилизинг-факторы тиреотропного, кортикотропного и гонадотропного гормонов. Их роль в функционировании организма.
- •1. Гормон роста, пролактин
- •2. Тиреотропин, лютеинизирующий гормон и фолликулостимулирующий гормон
- •3. Группа гормонов, образующихся из проопиомеланокортина
- •4. Гормоны задней доли гипофиза
- •35.Тиреокальцитонин и паратгормон. Биосинтез и его регуляция. Основные биохимические эффекты.
- •36. Гормоны поджелудочной железы. Глюкагон и инсулин. Их биологическая роль. Биохимический механизм действия инсулина. Рецепторы инсулина, их строение и функционирование.
- •Механизм действия инсулина
- •Активация инсулинового рецептора
- •2. Реакции, связанные с активностью ферментов map-киназ – в целом управляют активностью хроматина (медленные и очень медленные эффекты инсулина).
- •Два пути реализации эффектов инсулина Реакции, связанные с активностью фосфатидилинозитол-3-киназы
- •Действие фосфатидилинозитолдифосфат-3-киназы на фосфатидилинозитол-4,5-дифосфат Мишени и эффекты
- •Инактивация инсулина
- •Глутатион-инсулин-трансгидрогеназа, которая восстанавливает дисульфидные связи между цепями а и в, в результате чего гормон распадается.
- •Инсулиназа (инсулин-протеиназа), гидролизующая инсулин до аминокислот.
- •Патология Гипофункция
- •37. Биохимия углеводного обмена. Роль углеводов в образовании макроэргов и гликозилировании белков.
- •Регуляция синтеза и секреции
- •Механизм действия - цитозольный
- •Мишени и эффекты
- •Инактивация тиреоидных гормонов
- •42. Липиды, их биологическая роль и локализация в организме. Классификация липидов по химическому строению. Биосинтез холестерола, жирных кислот, триглицеридов: фармакологическая регуляция.
- •Биосинтез холестерола
- •4. Обрыв цепи.
- •44.Обмен фосфолипидов и их роль в рецепторных механизмах действия лекарственных веществ.
- •Реакции синтеза фосфолипидов с использованием фосфатидной кислоты
- •3 Путь – обратное превращение
- •45. Обмен жирных кислот и их роль в механизме действия лекарственных средств.
- •Синтез жирных кислот
- •Образование ацетил-sКоА из лимонной кислоты
- •Образование малонил-sКоА из ацетил-sКоА
- •Активные группы синтазы жирных кислот
- •Реакции синтеза жирных кислот Окисление жирных кислот (β-окисление)
- •Элементарная схема β-окисления
- •Этапы окисления жирных кислот
- •Реакция активации жирной кислоты
- •Карнитин-зависимый транспорт жирных кислот в митохондрию
- •Последовательность реакций β-окисления жирных кислот
- •46. Биохимия свертывающей системы крови: ферменты принимающие участие в коагуляции и фибринолизе, их фармакологическая регуляция.
- •1. Превращание фибриногена в фибрин-мономер.
- •47. Ферменты, принимающие участие в метаболизме эндогенных низкомолекулярных веществ и ксенобиотиков.
- •48. Повышение активности лекарственных веществ в результате реакции биотрансформации.
- •1)Повышение активности лекарственных веществ
- •2)Образование активного метаболита из неактивного вещества-пролекарства
- •49. Образование токсических продуктов лекарственных веществ в результате биотрансформации
- •50. Кофакторы и витамины, принимающие участие в метаболизме аминокислот и нейромедиаторов.
3. Группа гормонов, образующихся из проопиомеланокортина
Пептидные гормоны, образующиеся из ПОМК.
В разных клетках в результате избирательного протеолиза образуется разный набор пептидов: α- и β-меланоцитстимулиру-ющих гормонов (α- и β-МСГ) и эндорфинов. β-МСГ и кортикотропиноподобный гормон промежуточной доли у человека практически не образуются, так как у взрослых людей промежуточная доля не развита. В гипофизе человека найдены β-липотропин, γ-липотропин и β-эн-дорфин. Функции всех продуктов разрушения ПОМК недостаточно изучены.
Кортикотропин (АКТГ) - пептидный гормон; состоит из 39 аминокислотных остатков; синтезируется в клетках передней доли гипофиза под влиянием кортиколиберина.
При стрессе (травма, ожог, хирургическое вмешательство, интоксикация химическими веществами, кровотечение, боль, психическая травма) концентрация АКТГ в крови возрастает во много раз. У здоровых людей наименьший уровень АКТГ в крови отмечается в конце дня и непосредственно перед сном, наибольший - в 6-8 ч утра, в момент пробуждения.
Механизм действия АКТГ включает взаимодействие с рецептором плазматической мембраны клеток, активацию аденилатциклазы и фосфорилирование белков, участвующих в синтезе кортикостероидов. Эти эффекты усиливаются в присутствии ионов Са2+. В клетках коры надпочечников АКТГ стимулирует гидролиз эфиров холестерола, увеличивает поступление в клетки холестерола в составе ЛПНП; стимулирует превращение холестерола в прегненолон; индуцирует синтез митохондриальных и микросомальных ферментов, участвующих в синтезе кортикостероидов.
4. Гормоны задней доли гипофиза
Окситоцин и вазопрессин - нонапептиды со сходной первичной структурой.
Основные биологические эффекты вазопрессина проявляются через взаимодействие с 2 типами рецепторов. V1-рецепторы расположены в клетках гладкой мускулатуры сосудов в комплексе с фосфолипазой С. Результат трансдукции сигнала в эти клетки - сокращение сосудов. V2-рецепторы расположены в клетках почечных канальцев. Взаимодействие вазопрессина с V2-рецепторами активирует аденилатциклазную систему, увеличивая в клетках концентрацию цАМФ и активность протеинкиназы А. В результате этой активации происходит фосфорилирование белков, стимулирующих экспрессию генов белков, которые образуют каналы, обеспечивающие реабсорбцию воды.
Окситоцин стимулирует сокращение гладкой мускулатуры матки, а также играет важную роль в стимуляции лактации. Он вызывает сокращение миоэпителиальных клеток молочных желёз, в результате чего происходит перераспределение молока из альвеолярных протоков в область соска.
Акт сосания материнской груди стимулирует секрецию пролактина, обеспечивая образование и секрецию молока.
35.Тиреокальцитонин и паратгормон. Биосинтез и его регуляция. Основные биохимические эффекты.
Тиреокальцитонин (кальцитонин) — гормон пептидной природы (полипептид, состоящий из 32 аминокислотных остатков с одной дисульфидной связью), вырабатываемый щитовидной железой (реже - вилочковой и околощитовидной железами), антагонист паратгормона.
• Биосинтез и его регуляция
Синтез и секреция кальцитонина осуществляется парафолликулярными клетками, или С-клетками, лежащими в интерстициальной жидкости между фолликулами в щитовидной железе, в виде высокомолекулярного белка-предшественника.
Кальцитонин образуется в результате протеолитического расщепления более крупного препропептида, который является продуктом гена CALC1
Образование кальцитонина напрямую зависит от уровня кальция в крови: при его повышении концентрация кальцитонина увеличивается, а при падении – снижается. Мощными стимуляторами секреции также являются глюкагон и пентагастрин.
• Основные биохимические эффекты
Механизм действия - аденилатциклазный
Тиреокальцитонин понижает содержание кальция и фосфата в плазме крови за счёт усиления захвата Са и Р остеобластами; стимулирует размножение и функциональную активность остеобластов; одновременно тиреокальцитонин тормозит размножение и функциональную активность остеокластов и процессы резорбции кости (процесс разрушения костной ткани)
Кроме того, кальцитонин подавляет канальцевую реабсорбцию ионов кальция в почках, тем самым стимулируя их экскрецию почками с мочой
Паратгормон (паратиреоидный гормон) продуцируется околощитовидными железами и по механизму действия является антагонистом тиреокальцитонина. Паратгормон – это полипептид, состоящий из 84 аминокислотных остатков
• Биосинтез и его регуляция
Паратгормон синтезируется в виде препрогормона (115 аминокислот). От последнего в результате частичного гидролиза в эндоплазматической сети отщепляется 25 аминокислотных остатков и образуется прогормон; далее в комплексе Гольджи от него отщепляется гексапептид и образуется активный гормон. Паратгормон упаковывается и хранится в секреторных гранулах (везикулах). В крови он транспортируется в связанном с белком состоянии.
Активирует образование гормона гипокальциемия.
Уменьшают высокие концентрации кальция через активацию кальций-чувствительной протеазы, гидролизующей один из предшественников гормона.
• Основные биохимические эффекты
Вид рецепции данного гормона трансмембранный, через ц-3`,5`- АМФ. Органы-мишени: костная ткань, почки и кишечник.
Эффект паратиреоидного гормона заключается в увеличении концентрации кальция и снижении концентрации фосфатов в крови. Это достигается тремя способами:
Костная ткань
при высоком уровне гормона активируются остеокласты и происходит деструкция костной ткани,
при низких концентрациях активируется перестройка кости и остеогенез.
Почки
увеличивается реабсорбция кальция и магния,
уменьшается реабсорбция фосфатов, аминокислот, карбонатов, натрия, хлоридов, сульфатов.
также гормон стимулирует образование кальцитриола (гидроксилирование по С1).
Кишечник
при участии кальцитриола усиливается всасывание кальция и фосфатов.