
- •1. Транспорт лекарственных веществ системой крови и лимфы (макротранспорт) и через биологические мембраны (микротранспорт).
- •2. Метаболизм лекарственных веществ, его фазы, суть метаболических превращений в каждой фазе.
- •1) Метаболическая трансформация
- •2) Биосинтетические реакции
- •3. Биотрансформация как первая фаза метаболизма лекарственных веществ в организме. Ферменты первой фазы метаболизма.
- •1) Окислительно-восстановительные реакции
- •2)Гидролиз
- •4. Цитохром р-450, его свойства. Индукторы и ингибиторы цитохрома р-450
- •5. Конъюгация как вторая фаза метаболизма лекарственных веществ в
- •6. Механизм действия лекарственных веществ. Понятие мишени для лекарственных веществ. Роль мембранных белков и липидов в механизме действия лекарственных веществ.
- •8. Типы рецепторов плазматических мембран: рецепторы-ионные каналы, рецепторы, сопряженные с g-белками, рецепторы-протеинкиназы. Их участие в развитии ответа клетки на лекарственные вещества.
- •9. Вторичные мессенджеры. Образование и деградация. Их роль в развитии ответа клетки на лекарственные вещества.
- •10. Внутриклеточные рецепторы. Их участие в ответе клетки на лекарственные вещества.
- •11. Биохимия холинергического синапса. Биосинтез, депонирование и выброс ацетилхолина, регуляторы этих процессов.
- •12. Гидролиз ацетилхолина на холинэстеразе, его механизм. Ингибиторы холинэстеразы, их типы. Реактиваторы холинэстеразы.
- •13. Холинэстеразы, их типы, локализация. Строение и функционирование ацетилхолинэстеразы.
- •Строение
- •Механизм действия
- •16. Катехоламины, их представители, особенности химической структуры, их функции в организме.
- •17. Биохимия адренергического синапса. Депонирование, выделение и обратный захват норадреналина. Регуляторы этих стадий.
- •18. Биосинтез катехоламинов, их деградация. Регуляция этих процессов.
- •19. Адренорецепторы, их типы и распределение в организме. Механизмы трансмембранной передачи сигнала, опосредованные адренорецепторами.
- •1. Ионотропные гамк-рецепторы
- •23. Биохимия глицина, как тормозногонейромедиатора. Глициновые рецепторы. Транспортные системы для глицина и других аминокислот.
- •2)Глутатионовая система транспорта
- •25. Роль гистамина в биохимии аллергических реакций. Рецепторы гистамина, их типы, агонисты и антагонисты.
- •27. Биохимия рецепторов серотонина, типы и распределение серотониновых рецепторов в организме.
- •28. Эндогенные опиоиды, их виды. Биохимия опиоидных рецепторов, их типы и участие в формировании реакций на наркотические анальгетики. Агонисты и антагонисты опиоидных рецепторов.
- •31. Биосинтез и метаболизм простагландинов. Циклооксигеназа, ее разновидности и ингибиторы. Ингибиторы синтеза простагландинов, тромбоксансинтетазы, липоксигеназы.
- •32.Белково-пептидные гормоны. Биосинтез и секреция белково-пептидных гормонов. Их механизм действия на эффекторные клетки.
- •33. Биохимия гормонов гипоталамуса. Соматокринин, соматостатин, рилизинг-факторы тиреотропного, кортикотропного и гонадотропного гормонов. Их роль в функционировании организма.
- •1. Гормон роста, пролактин
- •2. Тиреотропин, лютеинизирующий гормон и фолликулостимулирующий гормон
- •3. Группа гормонов, образующихся из проопиомеланокортина
- •4. Гормоны задней доли гипофиза
- •35.Тиреокальцитонин и паратгормон. Биосинтез и его регуляция. Основные биохимические эффекты.
- •36. Гормоны поджелудочной железы. Глюкагон и инсулин. Их биологическая роль. Биохимический механизм действия инсулина. Рецепторы инсулина, их строение и функционирование.
- •Механизм действия инсулина
- •Активация инсулинового рецептора
- •2. Реакции, связанные с активностью ферментов map-киназ – в целом управляют активностью хроматина (медленные и очень медленные эффекты инсулина).
- •Два пути реализации эффектов инсулина Реакции, связанные с активностью фосфатидилинозитол-3-киназы
- •Действие фосфатидилинозитолдифосфат-3-киназы на фосфатидилинозитол-4,5-дифосфат Мишени и эффекты
- •Инактивация инсулина
- •Глутатион-инсулин-трансгидрогеназа, которая восстанавливает дисульфидные связи между цепями а и в, в результате чего гормон распадается.
- •Инсулиназа (инсулин-протеиназа), гидролизующая инсулин до аминокислот.
- •Патология Гипофункция
- •37. Биохимия углеводного обмена. Роль углеводов в образовании макроэргов и гликозилировании белков.
- •Регуляция синтеза и секреции
- •Механизм действия - цитозольный
- •Мишени и эффекты
- •Инактивация тиреоидных гормонов
- •42. Липиды, их биологическая роль и локализация в организме. Классификация липидов по химическому строению. Биосинтез холестерола, жирных кислот, триглицеридов: фармакологическая регуляция.
- •Биосинтез холестерола
- •4. Обрыв цепи.
- •44.Обмен фосфолипидов и их роль в рецепторных механизмах действия лекарственных веществ.
- •Реакции синтеза фосфолипидов с использованием фосфатидной кислоты
- •3 Путь – обратное превращение
- •45. Обмен жирных кислот и их роль в механизме действия лекарственных средств.
- •Синтез жирных кислот
- •Образование ацетил-sКоА из лимонной кислоты
- •Образование малонил-sКоА из ацетил-sКоА
- •Активные группы синтазы жирных кислот
- •Реакции синтеза жирных кислот Окисление жирных кислот (β-окисление)
- •Элементарная схема β-окисления
- •Этапы окисления жирных кислот
- •Реакция активации жирной кислоты
- •Карнитин-зависимый транспорт жирных кислот в митохондрию
- •Последовательность реакций β-окисления жирных кислот
- •46. Биохимия свертывающей системы крови: ферменты принимающие участие в коагуляции и фибринолизе, их фармакологическая регуляция.
- •1. Превращание фибриногена в фибрин-мономер.
- •47. Ферменты, принимающие участие в метаболизме эндогенных низкомолекулярных веществ и ксенобиотиков.
- •48. Повышение активности лекарственных веществ в результате реакции биотрансформации.
- •1)Повышение активности лекарственных веществ
- •2)Образование активного метаболита из неактивного вещества-пролекарства
- •49. Образование токсических продуктов лекарственных веществ в результате биотрансформации
- •50. Кофакторы и витамины, принимающие участие в метаболизме аминокислот и нейромедиаторов.
1. Ионотропные гамк-рецепторы
Рецепторы, называемые ГАМКA, расположены в большом количестве в области лимбической доли головного мозга. Каждый рецептор связан с хлорным каналом.
При активации ГАМКA-рецепторов хлорные каналы открываются, и ионы Cl- по градиенту концентрации поступают из синаптической щели в цитозоль, что приводит к гиперполяризации мембраны и возникновению тормозного потенциала.
Действие седативных снотворных препаратов барбитуровой кислоты и бензодиазепина реализуется за счет активации ГАМКA-рецепторов. Аналогично действие этанола и летучих анестетиков.
Основной антагонист, занимающий активный центр рецептора, — конвульсант бикукуллин. Другой конвульсант — пикротоксин — связывается с субъединицами белка, в активном состоянии закрывающими ионный канал.
2. Метаботропные ГАМК-рецепторы – оказывают аналогичное действие при активации G-белков влияют на особый вид постсинаптических калиевых каналов — GIRK-каналы (G-белок-связанные калиевые каналы внутреннего выпрямления). При присоединении медиатора происходит отделение β-субъединицы, которая «выталкивает» ионы К+ через GIRK-канал, что приводит к формированию ТПСП.
ГАМКергические средства
Свойства:
1)седативное действие
2)противосудорожное действие
3)антигипоксическое действие
4)ноотропное действие
АМИНАЛОН (гаммалон)
Применяют при атеросклерозе мозговых сосудов и нарушении мозгового кровообращения, умственной отсталости у детей, гипертонической болезни, церебрально-сосудистой недостаточности с расстройством речи, внимания, памяти.
ОКСИБУТИРАТ НАТРИЯ
Легко проникает в ЦНС, вызывая седативное и центральное миорелаксирующее действие. Обладает антигипоксическим эффектом.
Применяют для вводного и базисного наркоза, для профилактики и терапии гипоксического отека мозга, при психическом возбуждении и бессоннице.
ФЕНИБУТ
Противосудорожной активностью не обладает. Имеет выраженный транквилизирующий эффект. Назначают при неврозах различного происхождения.
БАКЛОФЕН (лиоресал)
Угнетает спинальные и висцеральные рефлексы, уменьшает мышечное напряжение, клонус, оказывает также анальгезирующее действие. Антиспастический препарат. Назначают при спазмах в связи с рассеянным склерозом, гипертонусе мышц, при мышечных спазмах.
ПИРАЦЕТАМ (ноотропил)
Хорошо всасывается. Ноотропный препарат, оказывает прямое активирующее влияние на интегральные механизмы мозга, стимулирует обучение, улучшает память и умственную деятельность. Учащает кровоснабжение и энергоснабжение мозга.
ВАЛЬПРОАТ NA (депакин) - противосудорожное средство, ингибирует ГАМК-трансаминазу.
НИКОТИНОИЛ-Γ-АМИНОМАСЛЯНАЯ КИСЛОТА (пикамилон) – конденсат молекулы ГАМК и никотиновой кислоты. Обладает ноотропным, антигипо- ксическим и транквилизирующим действием.
23. Биохимия глицина, как тормозногонейромедиатора. Глициновые рецепторы. Транспортные системы для глицина и других аминокислот.
Глицин — аминоуксусная кислота, полярная, заменимая АК, входит в состав большинства белков; в молекуле отсутствует асимметричный атом углерода (оптически неактивна). Является тормозным медиатором.
CH2(NH2)COOH
Расположение: в большом количестве содержится в клетках головного и спинного мозга.
Функции
является исходным веществом для синтеза других АК;
донор аминогруппы при синтезе гемоглобина;
производные глицина участвуют в образовании коллагена и соединительной ткани, глюкагона, глутатиона, креатина, лецитина.
из данной аминокислоты в живых клетках синтезируются пуриновые основания и порфирины.
является важным участником выработки гормонов, ответственных за усиление иммунной системы
Биосинтез
Может синтезироваться из холина (витамина группы В), а также из треонина и серина. Основным источником глицина в организме служит заменимая аминокислота серин. Реакция превращения серина в глицин легко обратима. В реакции взаимопревращения глицина и серина участвует тетрагидрофолиевая кислота; эту реакцию катализирует пиридоксалевый фермент серин-оксиметилтрансфераза:
Также возможны взаимопревращения треонина и глицина в треонинальдолазной реакции:
Катаболизм
Основной путь - распад глицина на СО2, NH3 и N5,N10-метилентетрагидрофолиевую кислоту по уравнению:
Механизм этой реакции включает участие митохондриальной глицинрасщепляющей ферментной системы, состоящей из 4 белков: Р-белка, содержащего пиридоксальфосфат (глициндекарбоксилаза); Н-белка, содержащего липоевую кислоту; Т-белка, требующего присутствия ТГФК, и L-белка, названного липамиддегидрогеназой:
Биологический смысл данного пути катаболизма глицина состоит в образовании активного одноуглеродного фрагмента (N5, N10—СН2—ТГФК), используемого в уникальных реакциях синтеза метионина, пуриновых нуклеотидов, тимидиловой кислоты и др.
Глициновый рецептор
Белок-рецептор с четвертичной структурой.
Все рецепторы данной группы — это ионные каналы, состоящие обычно из 5 субъединиц двух типов, α и β. Каждая субъединица ГлиР состоит из большого глобулярного внеклеточного — находящегося в синаптической щели — домена (ВКД), являющегося N-концом белка, 4 трансмембранных частей, внутриклеточной петли и короткого внеклеточного С-конца. В соединении с глицином играют роль и α-, и β-субъединицы, причем участки на их (-)-концах связываются с карбоксигруппой глицина (СОО-), а на (+)-концах — с аминогруппой (NH3+).
При связывании с лигандом сквозь канал начинают проходить ионы, в зависимости от типа рецептора и градиента мембраны, тем самым, изменяя мембранный потенциал. После связывания с глицином ГлиР повышает уровень ионов Cl- в клетке-мишени, тем самым гиперполяризуя мембрану. Связыванию глицина с ГлиР препятствует стрихнин, вызывающий судороги алкалоид. Уровень глицина в нервной ткани, а, следовательно, и распространенность ГлиР, выше всего в продолговатом мозге, варолиевом мосту и спинном мозге.
Транспортные системы для глицина и других аминокислоь
Транспорт аминокислот через мембраны клеток осуществляется при помощи двух механизмов: вторичный активный транспорт и глутатионовая транспортная система.
1)Вторичный активный транспорт
Перенос аминокислот с использованием градиента концентрации натрия между внутренней и наружной сторонами клеточной мембраны.
Вторичный активный транспорт основан на наличии низкой концентрации ионов натрия внутри клеток, создаваемой мембранным ферментом Na+,K+-АТФазой. Специфический белок-транспортер связывает на апикальной поверхности энтероцитов аминокислоту и ион натрия. В отсутствии натрия аминокислота не в состоянии связаться с белком-переносчиком.
Затем, изменив свое положение в мембране, белок отдает ион натрия в цитозоль по градиенту концентрации. Сразу после этого аминокислота теряет связь с белком и остается в цитоплазме.
В настоящее время выделяют 5 транспортных систем:
для крупных нейтральных, в том числе алифатических и ароматических аминокислот,
для малых нейтральных – аланина, серина, треонина,
для основных аминокислот – аргинина и лизина,
для кислых аминокислот – аспартата и глутамата,
для малых аминокислот – глицина, пролина и оксипролина.