
- •ВВЕДЕНИЕ
- •1. ЗАДАЧИ НЕРАЗРУШАЮЩИХ МЕТОДОВ КОНТРОЛЯ
- •1.1. Цель и задачи технической диагностики
- •1.2. Виды дефектов
- •1.2.1. Классификация дефектов
- •1.2.2. Дефекты металлических заготовок
- •1.3. Виды неразрушающего контроля
- •1.4. Сравнение разрушающих и неразрушающих методов контроля
- •2. ОПТИЧЕСКИЙ КОНТРОЛЬ
- •2.1. Общие вопросы оптического неразрушающего контроля
- •2.2. Источники света и первичные преобразователи оптического излучения
- •2.3. Визуальный и визуально-оптический контроль качества
- •2.4. Приборы ВОК
- •2.5. Оптический контроль, использующий волновую природу света
- •3. КАПИЛЛЯРНЫЙ МЕТОД НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ
- •3.1. Физическая основа метода
- •3.2. Классификация КНК и применяемые материалы
- •3.3. Технология капиллярного контроля
- •4. АКУСТИЧЕСКИЕ МЕТОДЫ КОНТРОЛЯ
- •4.1. Основные понятия волнового процесса
- •4.2. Излучение и прием акустических волн
- •4.3. Активные методы акустической дефектоскопии
- •4.4. Метод акустической эмиссии
- •4.5. Применение акустических методов в дефектоскопии
- •5. МАГНИТНЫЙ НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ
- •5.1. Область применения и классификация
- •5.2. Способы намагничивания изделий
- •5.3. Способы регистрации дефектов при МНК
- •5.4. Магнитопорошковый метод неразрушающего контроля
- •5.5. Магнитографический метод контроля
- •5.6. Магнитные преобразователи
- •5.7. Размагничивание изделий
- •5.8. Дефектоскопия стальных канатов
- •6. ВИХРЕТОКОВЫЙ, ЭЛЕКТРИЧЕСКИЙ И ТЕПЛОВОЙ ВИДЫ КОНТРОЛЯ
- •6.1. Вихретоковый вид контроля
- •6.2. Электрический вид контроля
- •6.3. Тепловой вид контроля
- •7. ТЕЧЕИСКАНИЕ
- •7.1. Термины и определения течеискания, количественная оценка течей
- •7.2. Способы контроля и средства течеискания
- •7.3. Масс-спектрометрический метод
- •7.4. Галогенный и катарометрический методы
- •7.5. Жидкостные методы течеискания
- •7.6. Акустический метод
- •Библиографический список
1.3. Виды неразрушающего контроля
Типовая программа диагностики предусматривает использование различных методов контроля, прежде всего методов неразрушающего контроля [1]. Неразрушающий контроль требует применения специальных и дорогостоящих приборов и оборудования и привлечения высококвалифицированных аттестованных специалистов. Он может осуществляться как дискретно, так и путем постоянного мониторинга на сложных и дорогостоящих опасных производственных объектах.
Для получения информации в неразрушающем контроле (далее НК) используют все виды физических полей и излучений, химических взаимодействий и процессов.
Классификация видов НК в соответствии с ГОСТ 18353–79 основана на физических процессах взаимодействия поля или вещества с объектом контроля. В основе решения диагностических задач лежит прежде всего оптимальный выбор физического процесса, дающего наиболее объективную информацию об объекте диагностирования. В зависимости от общности физических принципов, на которых они основаны, различают девять видов НК: акустический, магнитный, тепловой, электрический, оптический, вихретоковый, радиационный, проникающими веществами и радиоволновой. Каждый из видов НК подразделяют на методы, отличающиеся следующими признаками [5]:
характером взаимодействия поля или вещества с объектом, определяющим соответствующие изменения поля или состояния вещества;
параметром поля или вещества (первичным информативным параметром), измеряемым в процессе контроля;
способом измерения параметра поля или вещества.
Классификация методов НК приведена в ГОСТ 18353–79. Ни один из методов НК не является универсальным. Каждый из них может быть использован наиболее эффективно для обнаружения определенных дефектов в заданных условиях [8]. Например, многие из методов применимы для контроля некоторых типов материалов: радиоволновые – для радиопрозрачных диэлектрических материалов; электроемкостный – для неметаллических, плохо проводящих ток материалов; вихретоковый, электропотенциальный – для хороших электропроводников; магнитный – для ферромагнетиков; акустический –
13
для материалов, обладающих небольшим затуханием звука соответствующей частоты, и т.д.
Чувствительность соответствующего метода НК оценивается наименьшими размерами выявляемых дефектов: для поверхностных – шириной раскрытия на поверхности детали, а также протяженностью и глубиной развития; для скрытых – размерами дефекта и глубиной его залегания. Сопоставление различных методов контроля можно проводить только в тех условиях, когда возможно применение нескольких методов. Перечень рекомендуемых методов НК приводится в нормативно-технических документах по технической диагностике конкретных объектов.
Для обеспечения единообразия проведения контроля в различных условиях, единства и требуемой точности получаемых результатов разработана система нормативно-технических документов. Она включает ГОСТы, ОСТы, правила и методики контроля. В них регламентируются классификация методов НК, терминология, основные параметры средств контроля, методы и периодичность их метрологической поверки, методика проведения НК, требования к квалификации персонала и др.
Средства неразрушающего контроля разделяют на индикаторные и измерительные. Индикаторными называют средства контроля, не имеющие измерительных узлов и предназначенные лишь для индикации дефектов. Средства контроля, оснащенные измерительными узлами, подлежат периодической метрологической поверке.
1.4. Сравнение разрушающих и неразрушающих методов контроля
Ниже приводятся перечни преимуществ и недостатков неразрушающих и разрушающих методов контроля.
Преимущества разрушающих методов контроля:
1.Испытания обычно имитируют одно или несколько рабочих условий. Следовательно, они непосредственно направлены на измерение эксплуатационной надежности [3].
2.Испытания обычно представляют собой количественные измерения разрушающих нагрузок или срока службы до разрушения при данном нагружении и условиях. Таким образом, они позволяют получить числовые данные, полезные для конструирования или для разработки стандартов или спецификаций.
14
3.Связь между большинством измерений разрушающим контролем и измеряемыми свойствами материалов (особенно под нагрузкой, имитирующей рабочие условия) обычно прямая. Следовательно, исключаются споры по результатам испытания и их значению для эксплуатационной надежности материала или детали.
Недостатки разрушающих методов контроля:
1.Испытания не проводят на объектах, фактически применяемых в эксплуатационных условиях. Следовательно, соответствие между испытываемыми объектами и объектами, применяемыми в эксплуатации (особенно в иных условиях), должно быть доказано другим способом [3].
2.Испытания могут проводиться только на части изделий из партии. Они, возможно, будут иметь небольшую ценность, когда свойства изменяются от детали к детали.
3.Часто испытания невозможно проводить на целой детали. Испытания в этом случае ограничиваются образцом, вырезанным из детали или специального материала, обладающих свойствами материала детали, который будет применяться в рабочих условиях.
4.Единичное испытание с разрушением может определить только одно или несколько свойств, которые могут влиять на надежность изделия в рабочих условиях.
5.Разрушающие методы контроля затруднительно применять к детали в условиях эксплуатации. Обычно для этого работа прекращается и данная деталь удаляется из рабочих условий.
6.Кумулятивные изменения в течение периода времени нельзя измерить на одной отдельной детали. Если несколько деталей из одной и той же партии испытывается последовательно в течение какогото времени, то нужно доказать, что детали были одинаковыми. Если детали применяются в рабочих условиях и удаляются после различных периодов времени, необходимо доказать, что каждая была подвержена воздействию аналогичных рабочих условий, прежде чем могут быть получены обоснованные результаты.
7.Когда детали изготовлены из дорогостоящего материала, стоимость замены вышедших из строя деталей может быть очень высока. При этом невозможно выполнить соответствующее количество
иразновидности разрушающих методов испытаний.
8.Многие разрушающие методы испытаний требуют механической или другой предварительной обработки испытываемого образца. Часто требуются крупногабаритные, дающие очень точные ре-
15
зультаты, машины. В итоге стоимость испытаний может быть очень высокой, а число образцов для испытаний ограниченным. Кроме того, эти испытания весьма трудоемки и могут проводиться только работниками высокой квалификации.
9. Разрушающие испытания требуют большой затраты человекочасов. Производство деталей стоит чрезвычайно дорого, если соответствующие длительные испытания применяются как основной метод контроля качества продукции.
Преимущества неразрушающих методов контроля:
1.Испытания проводятся непосредственно на изделиях, которые будут применяться в рабочих условиях.
2.Испытания можно проводить на любой детали, предназначенной для работы в реальных условиях, если это экономически обосновано. Эти испытания можно проводить даже тогда, когда в партии имеется большое различие между деталями [3].
3.Испытания можно проводить на целой детали или на всех ее опасных участках. Многие опасные с точки зрения эксплуатационной надежности участки детали могут быть исследованы одновременно или последовательно, в зависимости от удобства и целесообразности.
4.Могут быть проведены испытания многими НМК, каждый из которых чувствителен к различным свойствам или частям материала или детали. Таким образом, имеется возможность измерить столько различных свойств, связанных с рабочими условиями, сколько необходимо.
5.Неразрушающие методы контроля часто можно применять к детали в рабочих условиях, без прекращения работы, кроме обычного ремонта или периодов простоя. Они не нарушают и не изменяют характеристик рабочих деталей.
6.Неразрушающие методы контроля позволяют применить повторный контроль данных деталей в течение любого периода времени. Таким образом, степень повреждений в процессе эксплуатации, если ее можно обнаружить, и ее связь с разрушением в процессе эксплуатации могут быть точно установлены.
7.При неразрушающих методах испытаний детали, изготовленные из дорогостоящего материала, не выходят из строя при контроле. Возможны повторные испытания во время производства или эксплуатации, когда они экономически и практически оправданы.
8.При неразрушающих методах испытаний требуется небольшая (или совсем не требуется) предварительная обработка образцов.
16
Некоторые устройства для испытаний являются портативными, обладают высоким быстродействием, в ряде случаях контроль может быть полностью автоматизированным. Стоимость НМК ниже, чем соответствующая стоимость разрушающих методов контроля.
9.Большинство неразрушающих методов испытания кратковременны и требуют меньшей затраты человеко-часов, чем типичные разрушающие методы испытаний. Эти методы можно использовать для контроля всех деталей при меньшей стоимости или стоимости, сопоставимой со стоимостью разрушающих методов испытаний лишь небольшого процента деталей в целой партии.
Недостатки неразрушающих методов контроля:
1.Испытания обычно включают в себя косвенные измерения свойств, не имеющих непосредственного значения при эксплуатации. Связь между этими измерениями и эксплуатационной надежностью должна быть доказана другими способами [8].
2.Испытания обычно качественные и редко – количественные. Обычно они не дают возможности измерения разрушающих нагрузок
исрока службы до разрушения даже косвенно. Они могут, однако, обнаружить дефект или проследить процесс разрушения.
3.Обычно требуются исследования на специальных образцах и исследование рабочих условий для интерпретации результатов испытания. Там, где соответствующая связь не была доказана, и в случаях, когда возможности методики ограничены, наблюдатели могут не согласиться в оценке результатов испытаний.
Контрольные вопросы
1.В каких случаях необходимо применение НМК?
2.Какие основные виды НМК существуют?
3.Каковы требования, предъявляемые к НМК?
4.В чем, на ваш взгляд, состоит основная задача системы контроля качества продукции?
5.Какие основные критерии эффективности НМК вы знаете?
6.Чем определяется надежность системы контроля качества?
7.Какие виды отказов системы контроля качества вы можете назвать?
8.С какой целью введена система классов чувствительности и групп качества?
9.Какие основные недостатки характерны НМК?
10.Каковы основные недостатки разрушающих методов контроля?
17