
- •1.2 Факторы, определяющие внутреннее строение залежей
- •1.2.1 Емкостные свойства пород-коллекторов
- •Пористость и строение порового пространства
- •1.2.2 Фильтрационные свойства пород-коллекторов. Проницаемость
- •1.2.3 Нефте-, газо-, водонасыщенность пород-коллекторов
- •1.3 Пластовые флюиды
- •1.3.1 Пластовые нефти
- •Классификация нефтей
- •Газожидкостная смесь УВ состоит преимущественно из соединений парафинового, нафтенового и ароматического рядов. В состав нефти входят также высокомолекулярные органические соединения, содержащие кислород, серу, азот.
- •Физические свойства нефтей
- •1.3.2 Пластовые газы
- •Физические свойства газов
- •1.3.3 Газоконденсат
- •1.3.4 Газогидраты
- •1.3.5 Пластовые воды нефтяных и газовых месторождений
- •1.4 Методы поиска и разведки нефтяных и газовых месторождений
- •1.4.1 Геофизические методы
- •1.4.2 Исследование скважин в процессе бурения
- •1. 5 Этапы поисковоразведочных работ и стадии разработки залежей
- •1.5.1 Поисковый этап
- • Стадия выявления и подготовки объектов для поискового бурения
- • Стадия поиска месторождений (залежей)
- •1.5.2 Разведочный этап
- •1.5.3 Стадии разработки залежей
- •1.5.4 Этапы добычи нефти и газа
- •Бурение нефтяных и газовых скважин
- •2.1 Краткая история бурения нефтяных и газовых скважин
- •2.2 Общие сведения о бурении нефтяных и газовых скважин
- •2.2.1 Основные термины и определения
- •2.3 Способы бурения скважин
- •2.3.1 Ударное бурение
- •2.3.2 Вращательное бурение скважин
- •2.4 Оборудование для бурения нефтяных и газовых скважин
- •2.4.1 Кустовые основания
- •2.4.2 Буровая вышка
- •2.4.3 Спуско-подъемный комплекс буровой установки
- •2.4.4 Комплекс для вращения бурильной колонны
- •2.4.5 Насосно – циркуляционный комплекс буровой установки
- •2.5 Технологический буровой инструмент
- •2.5.1 Породоразрушающий инструмент
- •2.5.1.1 Лопастные долота
- •2.5.1.2 Шарошечшые долота
- •2.5.1.3 Алмазные долота (секторные)
- •2.5.1.4 Инструмент для отбора керна
- •2.5.2 Бурильная колонна
- •2.5.2.1 Ведущие бурильные трубы
- •2.5.2.2 Стальные бурильные трубы
- •2.5.2.3 Легкосплавные бурильные трубы
- •2.5.2.4 Утяжеленные бурильные трубы
- •2.5.2.5 Переводники
- •2.5.2.6 Специальные элементы бурильной колонны
- •2.5.3 Забойные двигатели
- •2.5.3.1 Турбобуры
- •2.5.3.2 Винтовой забойный двигатель
- •2.6 Цикл строительства скважины
- •2.7 Методы вскрытия продуктивных горизонтов и освоения скважины
- •2.8 Промывка скважин
- •Химическая обработка буровых растворов
- •2.9 Осложнения, возникающие при бурении
- •2.10 Наклонно-направленные скважины
- •2.11 Бурение скважин на море
- •3.1 Природные режимы залежей нефти и газа
- •3.2 Режимы нефтяных залежей
- •3.2.1 Водонапорный режим
- •3.2.2 Упруговодонапорный режим
- •3.2.3 Газонапорный режим
- •3.2.4 Режим растворенного газа
- •3.2.5 Гравитационный режим
- •3.3 Режимы газовых и газоконденсатных залежей
- •3.3.1 Газовый режим
- •3.3.2 Упруговодогазонапорный режим
- •3.3.3 Смешенные природные режимы залежей
- •3.4 Искусственные методы воздействия на нефтяные пласты и призабойную зону
- •3.4.1 Методы поддержания пластового давления
- •Внутриконтурное заводнение
- •Блоковое заводнение
- •Сводовое заводнение
- •Площадное заводнение
- •3.4.2 Методы, повышающие проницаемость пласта и призабойной зоны
- •Химические методы
- •Физические методы
- •3.4.3 Методы повышения нефтеотдачи и газоотдачи пластов
- •4.1 Фонтанный способ эксплуатации скважин
- •4.1.1 Скважинное (подземное) оборудование
- •4.1.2 Устьевое (земное) оборудование
- •4.1.3 Особенности эксплуатации фонтанных скважин
- •4.2 Газлифтный способ эксплуатации скважин
- •4.2.1 Принцип действия газлифта
- •4.2.2 Оборудования газлифтных скважин
- •4.3 Насосный способ эксплуатации скважин
- •4.3.1 Эксплуатация скважин штанговыми насосами
- •4.3.2 Эксплуатация скважин погружными электроцентробежными насосами
- •4.3.3 Установки погружных винтовых электронасосов
- •4.3.4 Установка погружных диафрагменных электронасосов
- •4.3.5 Установка гидропоршневых насосов
- •4.3.6 Струйные насосы
- •4.4 Эксплуатация газовых скважин
- •4.5 Одновременная раздельная эксплуатация нескольких пластов одной скважиной
- •4.6 Общие понятия о подземном и капитальном ремонте скважин
- •5.2 Промысловая подготовка нефти
- •5.2.1 Дегазация
- •5.2.2 Обезвоживание
- •5.2.3 Обессоливание
- •5.2.5 Установка комплексной подготовки нефти
- •5.3 Системы промыслового сбора природного газа
- •5.4 Промысловая подготовка газа
- •5.4.1 Очистка газа от механических примесей
- •5.4.2 Осушка газа
- •5.4.3 Очистка газа от сероводорода
- •5.4.4 Очистка газа от углекислого газа
СПБГУАП| Институт 4 группа 4736
высокосернистые (более 2.0 %).
Асфальтосмолистые вещества нефти — высокомолекулярные соединения, включающие кислород, серу и азот и состоящие из большого числа нейтральных соединений неизвестного строения и непостоянного состава, среди которых преобладают нейтральные смолы и асфальтены. Содержание асфальтосмолистых веществ в нефтях колеблется в пределах 1 – 40 %. Наибольшее количество смол отмечается в тяжелых темных нефтях, богатых ароматическими УВ.
По содержанию смол нефти подразделяются на:
малосмолистые (содержание смол ниже 18 %);
смолистые (18 – 35 %);
высокосмолистые (свыше 35 %).
Нефтяной парафин — это смесь твердых УВ двух групп, резко отличающихся друг от друга по свойствам, — парафинов C17H36 - С35Н72 и церезинов С36Н74 - C55H112. Температура плавления первых 27 – 71 °С, вторых — 65 – 88 °С. При одной и той же температуре плавления церезины имеют более высокую плотность и вязкость.
Содержание парафина в нефти иногда достигает 13 – 14 % и больше. По содержанию парафинов нефти подразделяются на:
♦малопарафинистые при содержании парафина менее 1.5 % по массе;
♦парафинистые – 1.5 – 6.0 %;
♦высокопарафинистые - более 6 %.
Вотдельных случаях содержание парафина достигает 25 %. При температуре его кристаллизации близкой к пластовой, реальна возможность выпадения парафина в пласте
втвердой фазе при разработке залежи.
Физические свойства нефтей
Нефти разных пластов одного и того же месторождения и тем более разных месторождений могут отличаться друг от друга. Их различия во многом определяются их газосодержанием. Все нефти в пластовых условиях содержат в растворенном (жидком) состоянии газ.
Газосодержание (газонасыщенность) пластовой нефти — это объем газа VГ
растворенного в 1м3 объема пластовой нефти VП .Н . : |
|
G =VГ /VП .Н . |
(8) |
Газосодержание обычно выражают в м3/м3 или м3/т.
Газосодержание пластовых нефтей может достигать 300 – 500 м3/м3 и более, обычное его значение для большинства нефтей 30 – 100 м3/м3. Вместе с тем известно большое число нефтей с газосодержанием не выше 8 – 10 м3/м3.
hw.tpu.ru |
18 |
Контакты | https://new.guap.ru/i03/contacts
СПБГУАП| Институт 4 группа 4736
Растворимость газа — это максимальное количество газа, которое может быть растворено в единице объема пластовой нефти, при определенных давлении и температуре. Газосодержание может быть равным растворимости или меньше ее.
Коэффициентом разгазирования нефти называется количество газа, выделяющееся из единицы объема нефти при снижении давления на единицу.
Промысловым газовым фактором называется количество добытого газа в м3, приходящееся на 1 м3 (т) дегазированной нефти. Он определяется по данным о добыче нефти и попутного газа за определенный отрезок времени. Различают начальный газовый фактор, обычно определяемый по данным за первый месяц работы скважины, текущий газовый фактор, определяемый по данным за любой промежуточный отрезок времени, и средний газовый фактор, определяемый за период с начала разработки до какой-либо даты. Величина промыслового газового фактора зависит как от газосодержания нефти, так и от условий разработки залежи. Она может меняться в очень широких пределах.
Если при разработке в пласте газ не выделяется, то газовый фактор меньше газосодержания пластовой нефти, так как в промысловых условиях полной дегазации нефти не происходит.
Давлением насыщения пластовой нефти называется давление, при котором газ начинает выделяться из нее. Давление насыщения зависит от соотношения объемов нефти
игаза в залежи, от их состава, от пластовой температуры.
Вприродных условиях давление насыщения может быть равным пластовому давлению или может быть меньше него. В первом случае нефть будет полностью насыщена газом, во втором — недонасыщена.
Сжимаемость пластовой нефти обусловливается тем, что, как и все жидкости, нефть обладает упругостью, которая измеряется коэффициентом сжимаемости (или
объемной упругости) βH :
β |
H |
= |
1 |
∆V |
|
|
|
||||
|
V ∆p , |
(9) |
|||
|
|
||||
где ∆V — изменение объема нефти; V |
— исходный объем нефти. ∆p — |
изменение давления. Размерность βH — 1/Па, или Па-1.
Значение его для большинства пластовых нефтей лежит в диапазоне (1 - 5)*10-3 МПа-1. Сжимаемость нефти наряду со сжимаемостью воды и коллекторов проявляется главным образом при разработке залежей в условиях постоянного снижения пластового давления.
Коэффициент сжимаемости характеризует относительное приращение объема нефти при изменении давления на единицу.
hw.tpu.ru |
19 |
Контакты | https://new.guap.ru/i03/contacts
СПБГУАП| Институт 4 группа 4736
Коэффициент теплового расширения αH показывает, на какую часть ∆V
первоначального объема V0 изменяется объем нефти при изменении температуры на 1 °С
α |
H |
= |
1 |
∆V |
|
|
|
|
|||
|
V0 |
∆t . |
(10) |
||
|
|
Размерность αH — 1/°С. Для большинства нефтей значения коэффициента теплового расширения колеблются в пределах (1 - 20)*10-4 1/°С.
Коэффициент теплового расширения нефти необходимо учитывать при разработке залежи в условиях нестационарного термогидродинамического режима при воздействии на пласт различными холодными или горячими агентами. Его влияние наряду с влиянием других параметров сказывается как на условиях текущей фильтрации нефти, так и на величине конечного коэффициента извлечения нефти. Особенно важную роль коэффициент теплового расширения нефти играет при проектировании тепловых методов воздействия на пласт.
Объемный коэффициент пластовой нефти bH показывает, какой объем занимает в пластовых условиях 1 м3 дегазированной нефти:
|
bH |
= |
VПЛ .Н |
= |
ρН |
|
|
|
|
|
|
ρПЛ .Н |
, |
(11) |
|
|
|||
|
|
|
VДЕГ |
|
|
||||
где VПЛ .H |
— объем нефти |
в пластовых условиях; VДЕГ |
— объем |
того |
же |
||||
количества нефти |
после |
дегазации |
при |
атмосферном давлении и |
t=20°С; |
ρПЛ .H |
— |
плотность нефти в пластовых условиях; ρ — плотность нефти в стандартных условиях.
Объем нефти в пластовых условиях увеличивается по сравнению с объемом в нормальных условиях в связи с повышенной температурой и большим количеством газа, растворенного в нефти. Пластовое давление до некоторой степени уменьшает величину объемного коэффициента, но так как сжимаемость нефти весьма мала, давление мало влияет на эту величину.
Значения объемного коэффициента всех нефтей больше единицы и иногда достигают 2 - 3. Наиболее характерные величины лежат в пределах 1.2 – 1.8.
|
Θ = |
1 |
= |
|
VДЕГ |
= |
ρПЛ .Н |
|
|
Пересчетный коэффициент |
bН |
VПЛ .Н |
ρН . (12) |
||||||
|
|
|
Под плотностью пластовой нефти понимается масса нефти, извлеченной из недр с сохранением пластовых условий, в единице объема. Она обычно в 1.2 – 1.8 раза меньше плотности дегазированной нефти, что объясняется увеличением ее объема в пластовых условиях за счет растворенного газа. Известны нефти, плотность которых в
hw.tpu.ru |
20 |
Контакты | https://new.guap.ru/i03/contacts