
- •1. Основные параметры напряжений: амплитудное, среднее, среднеквадратическое и средневыпрямленное значение.
- •2 Преобразователи пикового значения: с открытым и закрытым входами: схемы, принцип действия.
- •3 Преобразователь среднеквадратического значения на терморезисторах: схема, принцип действия
- •4. Преобразователь среднеквадратического значения термоэлектрический: схема, принцип действия.
- •5. Преобразователь средневыпрямленного значения: схема, принцип действия.
- •5. Преобразователь средневыпрямленного значения: схема, принцип действия.
- •7. Цифровой вольтметр с кодо-импульсным преобразованием: структурная схема, принцип действия.
- •8. Импульсные вольтметры: структурная схема, принцип действия
- •8. Импульсные вольтметры: структурная схема, принцип действия
- •10. Методы измерения напряженности электромагнитного поля
- •11. Тепловые методы измерения поглощаемой мощности: характеристика, достоинства и недостатки.
- •12. Методы измерения проходящей мощности: характеристика, достоинства и недостатки.
- •13. Методы измерения импульсной мощности: характеристика, структурные схемы, принцип действия.
- •14. Генераторы нч - диапазона: структурные схемы, принцип действия.
- •15. Генераторы вч - диапазона: структурная схема, принцип действия.
- •16. Электронно-лучевой осциллограф: назначение, структурная схема, принцип действия.
- •17. Электронно-лучевой осциллограф: виды разверток и синхронизации.
- •18. Цифровой осциллограф: назначение, структурная схема, принцип действия
- •19. Анализатор спектра последовательного типа: назначение, структурная схема, принцип действия
- •21. Цифровой анализатор спектра: структурная схема, принцип действия.
- •22. Осциллографические методы измерения частоты.
- •23. Измерение частоты методом заряда и разряда конденсатора.
- •24. Резонансный и гетеродинный методы измерения частоты
- •32 Аналоговый измеритель добротности колебательных контуров: схема, принцип действия.
- •33. Цифровой измеритель добротности колебательных контуров: схема, принцип действия, основные соотношения
- •35 Аналоговый измеритель среднего значения случайного сигнала: схема, принцип действия.
- •41 Основные структурные схемы электронных вольтметров, сравнение, области применения
14. Генераторы нч - диапазона: структурные схемы, принцип действия.
Принцип работы генератора звуковых частот рассмотрим на примере «Г3-118». генератор представляет собой RС-генератор с дискретной установкой частоты и системой стабилизации уровня выходного напряжения.
Основой прибора является задающий генератор (ЗГ), представляющей собой усилитель, охваченный цепью регулируемой частотонезависимой положительной обратной связи и двумя цепями отрицательной обратной связи. Одна из цепей отрицательной обратной связи частотнонезависимая, другая, содержащая активный режекторный фильтр (АРФ), является частотнозадающей RС-цепью. На частоте режекции коэффициент передачи, содержащий АРФ, стремится к нулю. В этом случае усилитель остаётся охваченным положительной и отрицательной частотнонезависимыми обратными связями, коэффициенты которых обеспечивают генерирование схемой синусоидального сигнала с частотой, равной частоте режекции АРФ. На частотах, отличных от частоты режекции, глубина отрицательной связи возрастает и тем самым обеспечивает подавление в выходном сигнале ЗГ высших гармонических составляющих. Перестройка частоты осуществляется коммутацией элементов режекторного фильтра.
Рис.5
Переменное напряжение с выхода выходного усилителя (ВУ) одновременно с опорным напряжением от источника опорного напряжения (ИОН) поступает на усилитель-ограничитель (УО). На выходе УО возникают импульсы из отсеченных вершин синусоиды, которые преобразуются пиковым детектором (ПД) в постоянное напряжение с уровнем, пропорциональным амплитуде импульсов. Полученное постоянное напряжение управляет сопротивлением канала полевого транзистора и, следовательно, глубиной положительной обратной связи ЗГ. Плавная регулировка выходного напряжения обеспечивается изменением уровня опорного напряжения, подаваемого на УО.
Выходной сигнал ЗГ поступает на основной вход ВУ. На второй вход через инвертор подаётся напряжение высших гармоник, выделенное АРФ из выходного сигнала ЗГ. Таким образом, на входе ВУ происходит частичная компенсация спектральных составляющих, что приводит к снижению коэффициента гармоник на входе ВУ. С выхода усилителя напряжение подаётся на аттенюатор с общим ослаблением 60 дБ ступенями через 10 дБ и далее при постоянном выходном сопротивлении (600 Ом) выходит на гнездо номер два. При нагрузке, отличающейся от номинальной, и в случае ненагруженного выхода ступенчатая регулировка сохраняется.
На выходное гнездо номер один сигнал подаётся непосредственно с ВУ. При этом обеспечивается низкоомный выход генератора (менее 5 Ом) и максимальное значение выходной мощности и может быть использовано для подключения частотомера, осциллографа, в качестве источника сигнала синхронизации.
Плавная регулировка выходного напряжения обеспечивается для двух выводов генератора независимо от значения установленного ослабления.
15. Генераторы вч - диапазона: структурная схема, принцип действия.
В диапазоне радиочастот в средствах измерений применяют как генераторы сигналов, так и генераторы стандартных сигналов. Генераторы сигналов имеют большую среднюю выходную мощность( до 3 Вт) и их используют для питания измерительных передающих антенн и других мощных устройств. Генераторы стандартных сигналов – маломощные источники с низким уровнем выходного напряжения (до 1 Вт) – применяют при испытаниях и настройке узлов радиоаппаратуры. Основные требования, предъявляемые к ГСС: высокие стабильность частоты и амплитуды выходного сигнала, малый коэффициент нелинейных искажений. В генераторах стандартных сигналов предусматривают возможность получения амплитудной модуляции за счёт использования как внешнего, так и внутреннего источников напряжения. Внутренняя модуляция обычно действует на частотах 400 и 1000 Гц.
Схема ВЧ-генератора в тетради.