Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

биос 0810

.docx
Скачиваний:
10
Добавлен:
18.11.2020
Размер:
99.76 Кб
Скачать

Эндомитоз – один из видов митоза, суть которого заключается в редупликации хромосом. Без разрушения ядерной оболочки и без деления клетки (образование полиплоидов). Вследствие этого в клетке происходит умножение числа хромосом, иногда в десятки раз по сравнению с исходным. Эндомитоз встречается в интенсивно функционирующих клетках различных тканей: клетках печени, тканях нематод, насекомых, ракообразных, в корешках некоторых растений. Допускают, что эндомитоз возникает в процессе эволюции, как один из вариантов митоза.

Политения – многократное воспроизведение в хромосомах количества хромонем без увеличения их числа в клетке. При политении выпадают все фазы митотического цикла, кроме репродукции хромонем. Политения встречается у двукрылых насекомых, инфузорий, некоторых растений. Используется для построения карт хромосом, а также обнаружения хромосомных перестроек.

Мейоз – деление, обеспечивающее образование половых клеток.

Значение мейоза 1. Обеспечивает образование половых клеток с гаплоидным набором хромосом.

2. Обеспечивает поддержание постоянства числа хромосом в кареотипе.

3. Обуславливает образование большого количества новых комбинаций генов.

4. Является источником комбинативной изменчивости.

5. Обеспечивает половое размножение.

Состоит из двух последовательных делений:

1. Мейоз 1 – редукционное;

2. Мейоз II – эквационное.

Мейоз 1.

Профаза 1 – 5 стадий: 2n 2хр 4С.

Лептотена - хромосомы формы нитей, различимых в микроскоп.

Зиготена – конъюгация (спаривание) гомологичных хромосом, образование бивалентов.

Пахитена – происходит обмен участками гомологичных хромосом - кроссинговер. И образование рекомбинантных генов.

Диплотена – отталкивание между гомологичными хромосомами в области центромер. Остаются связанными в области перекреста. Эти места называются хиазмами.

Диакенез – спирализация максимальная, биваленты располагаются по периферии ядра. Исчезает ядрышко и ядерная оболочка. Центриоли расходятся к полюсам, начало образования веретена деления.

Метафаза 1 – биваленты выстраиваются в экваториальной плоскости, центромерами прикрепляются к нитям веретена деления. Генетическая характеристика: 2n 2хр. 4С.

Анафаза 1 – расхождение гомологичных хромосом к полюсам клетки. На каждом полюсе формируется гаплоидный набор хромосом. Каждая хромосома состоит из 2 хроматид. Генетическая характеристика: n 2хр. 2С.

Телофаза 1 – характерна для клеток животных при этом образуются 2 клетки с гаплоидным набором. Клетки растений сразу переходят в мейоз II.

Между мейозом I и мейозом II наблюдается интеркинез, в котором репликация ДНК отсутствует.

Мейоз II – точная копия митоза.

Профаза 2 - непродолжительная.

Метафаза 2 - образование экваториальной пластинки.

Анафаза 2 - расхождение сестринских хроматид. n 1 хр. 1С

Телофаза 2 - формирование ядер, деление цитоплазмы и образование 4 гаплоидных клеток. n 1 хр. 1С

Амитоз, или прямое деление, представляет собой деление ядра без подготовки аппарата деления, спирализации хромосом. Хромосомы распределяются произвольно.

Прямое деление характеризуется первоначально перешнуровкой ядрышка, затем ядра и цитоплазмы. Ядро может делиться на две равномерные части - равномерный амитоз, или две неравномерные части - неравномерный амитоз, либо ядро делится на несколько частей - фрагментация, шизогония. Иногда после деления ядра цитоплазма не делится, и возникают многоядерные клетки - амитоз без цитотомии. В зависимости от факторов, обуславливающих амитоз, выделяют три его вида: генеративный, реактивный, дегенеративный.

Генеративный амитоз отмечается при делении высоко специализированных полиплоидных клеток. Наблюдается у инфузории при делении макронуклеуса, а также в некоторых клетках млекопитающих (печени, эпидермиса).

Реактивный амитоз выявляется при различных повреждающих воздействиях: ионизирующего облучения, нарушении обменных процессов, голодании, нарушении нуклеинового обмена и денервации ткани. Этот вид амитоза обычно не завершается цитотомией и приводит к образованию многоядерных клеток. Вероятно, его следует рассматривать как компенсаторную реакцию, приводящую к увеличению поверхности обмена между ядром и цитоплазмой.

Дегенеративный амитоз возникает в стареющих клетках с угасающими жизненными свойствами. Этот вид представлен фрагментацией и почкованием ядер. Он не имеет отношения к репродукции клеток. Появление дегенеративных форм амитоза служит одним из признаков некробиотических процессов.

Прямое бинарное деление – характерно для прокариот. Включает репликацию кольцевой ДНК и далее – деление цитоплазмы с образованием двух клеток.

3. Что такое митотический цикл? Назовите периоды митотического цикла. Митотический (пролиферативный) цикл — комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специфических функций, а также периоды покоя Главные события митотического цикла заключаются в редупли­кации (самоудвоении) наследственного материала материнской клетки и в равномерном распределении этого материала между дочер­ними клетками. Указанным событиям сопутствуют закономерные изменения химической и морфологической организации хромосом По двум главным событиям митотического цикла в нем выделяют репродуктивную и разделительную фазы, соответствующие интерфазе и митозу классической цитологии. В начальный отрезок интерфазы (постмитотический, пресинтетический, или G1 -период) восстанавливаются черты организации интерфазной клетки, завершается формирование ядрышка, начав­шееся еще в телофазе. Из цитоплазмы в ядро поступает значительное (до 90%) количество белка. В цитоплазме интенсифицируется синтез белка. Это способствует росту массы клетки. Образуются химические предшественники ДНК, ферменты, катализирующие реакцию редуплика­ции ДНК, синтезируется белок, начинающий эту ре­акцию. Таким образом осу­ществляются 1 процессы подготовки следующего периода интерфазы — синтетического.

В синтетическом (S-neриод) удваивается количе­ство наследственного мате­риала клетки. За малыми исключениями редуплика­ции ДНК осуществляется полуконсервативным спо­собом (рис. 2.12). Он за­ключается в расхождении биспирали ДНК на две мо­лекулы с последующим синтезом возле каждой из них комплементарной мо­лекулы Затем участки (единицы репликации —репликоны) новообразованной ДНК «сшиваются» в одну макро­молекулу. В клетке, прошедшей S-период интерфазы, хромосомы содержат удвоенное количество гене­тического материала. Наряду с ДНК в синтетическом периоде интенсивно образуются РНК и белок, а количество гистонов строго удваивается

Отрезок времени от окончания синтетического периода до начала митоза занимает постсинтетический (предмитотический), или G2-период интерфазы- Он характеризуется интенсивным син­тезом РНК и особенно белка. Завершается удвоение массы цитоп­лазмы по сравнению с началом интерфазы. Это необходимо для вступления клетки в митоз. Часть образуемых белков (тубулины) используется в дальнейшем для построения микротрубочек веретена деления. Синтетический и постсинтетический периоды связаны с митозом непосредственно. Это позволяет выделить их в особый период интерфазы — препрофазу.

Митоз. Состоит из 4 фаз.

Профаза. Хромосомы спирализуются и приобретают вид нитей. Ядрышко разрушается. Распадается ядерная оболочка.. Центриоли клеточного центра расходятся к по­люсам клетки, между ними микротрубочки образует веретено !деления Метафаза. Заканчивается образование веретена деления. Хромосомы вы­страиваются В экваториальной плоскости клетки (метафазная пластинка). Микротрубочки веретена деления связаны с кинетохорами хромосом. Каждая хромосома продольно расщепляется на две хроматиды (дочерние хромосомы), соединенные в области кинетохора Анафаза. Связь между хроматидами нарушается, и они в качестве самостоятельных хромосом перемешаются к полюсам клетки со скоро­стью 0,2—5 мкм/мин. По завершении движения на полюсах собирается два равноценных полных набора хромосом Телофаза. Реконструируются интерфазные ядра дочерних клеток. Хромосомы деспирализуюгся. Образуются ядрышки. Разрушается верете­но деления. Материнская клетка делится на две дочерние Амитоз. Наряду с непрямым делением (митозом) описано прямое деле­ние клеток — амитоз. Он заключается в разделении ядра перетяж­кой без сложной перестройки генетического материала в виде конденсации хромосом и их точного разделения между дочерними клетками с помощью веретена деления. Предполагают (хотя это строго не доказано), что вслед за ядром делится цитоплазма. Оно наблю­дается довольно редко и встречается у некоторых видов бактерий и грибов. У высших растений лишь в старых и больных клетках можно наблюдать прямое деление. Амитоз совершается путем простой перетяжки ядра на две части с произвольным количеством ядерного вещества.

4. Охарактеризуйте процессы, протекающие в интерфазу митотического цикла Интерфа́за (англ. interphase) — период клеточного цикла, подразделяющийся на G1-, S- и G2-фазы. Во время интерфазы клетка готовится к будущему делению: растёт, удваивает количество цитоплазмы, клеточных белков и органелл. В S-фазе происходит удвоение хромосом и центросом (клеточных центров).

Основные события

В типичной культуре клеток человека интерфаза занимает 23 часа 24-часового клеточного цикла. Клеточный рост наблюдается на протяжении всей интерфазы. Интерфаза не только обеспечивает временную задержку, позволяющую клетке расти, но также предоставляет клетке возможность оценить пригодность внешних и внутренних условий для удвоения ДНК и последующего деления[1].

G1-фаза

Основная статья: G1-фаза

Фаза G1 наиболее важна с точки зрения контроля условий, в которых находится клетка. Её продолжительность в значительной мере определяется внешними условиями и сигналами от других клеток. Если условия не благоприятны для деления, то клетка задерживает прохождение через фазу G1 и даже может уйти в особое покоящееся состояние — G0-фазу. В этом состоянии клетки могут пребывать дни, недели и даже годы до возобновления пролиферации. Многие клетки находятся в G0 вплоть до собственной смерти или смерти организма. В ранней фазе G1 есть важная контрольная точка клеточного цикла[en], известная как точка рестрикции у млекопитающих или Старт у дрожжей. Если условия благоприятны и клетка получает от соседей сигналы роста и деления, то клетки проходят эту точку и после неё становятся коммитированными к удвоению ДНК, даже если внешние сигналы роста и деления исчезают[1].

В позднем митозе и G1-фазе начинается процесс инициации репликации ДНК: на ориджинах репликации (точках начала репликации) собирается мультибелковый пререпликативный комплекс. Иногда этот этап называют авторизацией (licensing) точек начала репликации, потому что инициация удвоения ДНК затрагивает только те точки, с которыми связан пререпликативный комплекс[2].

S-фаза

Основная статья: S-фаза

Схема центросомного цикла[3]

Схема центросомного цикла[3]

В S-фазе, наряду с ростом клетки, происходят два важных события: удваиваются хромосомы и центросомы. На удвоение хромосом приходится значительная часть клеточного цикла. Репликация ДНК активируется ровно один раз в клеточный цикл специальными циклинзависимыми киназами. В S-фазе компоненты пререпликативного комплекса, собравшегося на ориджинах репликации в фазе G1, инициируют сборку более крупного комплекса — преинициаторного комплекса. Он расплетает спираль ДНК и загружает на неё ДНК-полимеразы и другие белки репликации ДНК. После сборки преинициаторного комплекса компоненты пререпликативного комплекса диссоциируют, и сборка этого комплекса становится невозможной до следующей G1-фазы. Таким образом, точки начала репликации могут быть активированы только один раз за цикл[2].

Удвоение центросом начинается с инициации формирования новых центриолей около бывших дочерней и материнской центриолей при переходе клетки из фазы G1 в S-фазу. В ходе фаз S и G2 процентриоли[en] растут до тех пор, пока не достигнут размеров исходных центриолей. При окончании роста образуется диплосома[en] — одна из предшествующих центриолей с новосинтезированной центриолью, причём бывшая дочерняя центриоль становится материнской, а бывшая материнская центриоль сохраняет свой статус. В диплосоме центриоли перпендикулярны друг другу. По мере прохождения митоза расстояние между материнской и дочерней центриолями в каждой диплосоме увеличивается до тех пор, пока к концу анафазы диплосомы не разделяются. При разделении центриолей в диплосоме каждая из них окружается перицентриолярным материалом[en]. Описанная последовательность событий составляет центросомный цикл[en][4][5][6].

G2-фаза

Фаза G2 — это период быстрого клеточного роста и синтеза белка, в ходе которого клетка готовится к последующему делению. Интересно, что G2-фаза не является необходимой: клетки некоторых типов, например, клетки зародыша лягушки Xenopus и некоторых раковых опухолей[7] переходят к митозу сразу после удвоения ДНК, то есть S-фазы. Механизмы регуляции фазы G2 изучены недостаточно. По одной из гипотез, продолжительность G2-фазы регулируется размером клетки. Такой механизм контроля был описан у дрожжей Schizosaccharomyces pombe[8]. Биохимически фаза G2 завершается, когда достигается пороговая концентрация активного комплекса циклина B1[en] с циклинзависимой киназой 1[en] (Cdk1), также известного как фактор стимуляции созревания[en] (англ. Maturation promoting factor). В фазе G2 имеется контрольная точка, которая останавливает клетки в фазе G2 при обнаружении повреждений в ДНК. Этот эффект достигается ингибированием активности Cdk1[9].

5. Охарактеризуйте фазы митоза.Профаза К основным событиям профазы относят конденсацию хромосом внутри ядра и образование веретена деления в цитоплазме клетки. Распад ядрышка в профазе является характерной, но не обязательной для всех клеток особенностью.

Условно за начало профазы принимается момент возникновения микроскопически видимых хромосом вследствие конденсации внутриядерного хроматина. Уплотнение хромосом происходит за счёт многоуровневой спирализации ДНК. Данные изменения сопровождаются повышением активности фосфорилаз, модифицирующих гистоны, непосредственно участвующие в компоновке ДНК. Как следствие, резко снижается транскрипционная активность хроматина, инактивируются ядрышковые гены, большая часть ядрышковых белков диссоциирует. Конденсирующиеся сестринские хроматиды в ранней профазе остаются спаренными по всей своей длине с помощью белков-когезинов, однако к началу прометафазы связь между хроматидами сохраняется лишь в области центромер. К поздней профазе на каждой центромере сестринских хроматид формируются зрелые кинетохоры необходимые хромосомам для присоединения к микротрубочкам веретена деления в прометафазе.

Наряду с процессами внутриядерной конденсации хромосом в цитоплазме начинает формироваться митотическое веретено — одна из главных структур аппарата клеточного деления, ответственная за распределение хромосом между дочерними клетками. В образовании веретена деления у всех эукариотических клеток принимают участие полярные тельца, микротрубочки и кинетохоры хромосом.

С началом формирования митотического веретена в профазе сопряжены разительные изменения динамических свойств микротрубочек. Время полужизни средней микротрубочки уменьшается примерно в 20 раз от 5 минут до 15 секунд. Однако скорость их роста увеличивается примерно в 2 раза по сравнению с теми же интерфазными микротрубочками. Полимеризующиеся плюс-концы являются «динамически нестабильными» и резко переходят от равномерного роста к быстрому укорочению, при котором часто деполимеризуется вся микротрубочка. Примечательно, что для правильного функционирования митотического веретена необходим определенный баланс между процессами сборки и деполимеризации микротрубочек, так как ни стабилизированные, ни деполимеризованные микротрубочки веретена не в состоянии перемещать хромосомы.

Наряду с наблюдаемыми изменениями динамических свойств микротрубочек, слагающих нити веретена, в профазе закладываются полюса деления. Реплицированные в S-фазе центросомы расходятся в противоположных направлениях за счёт взаимодействия полюсных микротрубочек, растущих навстречу друг другу. Своими минус-концами микротрубочки погружены в аморфное вещество центросом, а процессы полимеризации протекают со стороны плюс-концов, обращенных к экваториальной плоскости клетки. При этом вероятный механизм расхождения полюсов объясняется следующим образом: динеино-подобные белки ориентируют в параллельном направлении полимеризующиеся плюс-концы полюсных микротрубочек, а кинезино-подобные белки в свою очередь расталкивают их в направлении к полюсам деления.

Параллельно конденсации хромосом и формированию митотического веретена, во время профазы происходит фрагментация эндоплазматического ретикулума, который распадается на мелкие вакуоли, расходящиеся затем к периферии клетки. Одновременно рибосомы теряют связи с мембранами ЭПР. Цистерны аппарата Гольджи также меняют свою околоядерную локализацию, распадаясь на отдельные диктиосомы, без особого порядка распределенные в цитоплазме.

Прометафаза

Окончание профазы и наступление прометафазы, как правило, знаменуется распадом ядерной мембраны. Целый ряд белков ламины фосфорилируется, вследствие чего ядерная оболочка фрагментируется на мелкие вакуоли, а поровые комплексы исчезают. После разрушения ядерной мембраны хромосомы без особого порядка располагаются в области ядра. Однако вскоре все они приходят в движение.

В прометафазе наблюдается интенсивное, но беспорядочное перемещение хромосом. Поначалу отдельные хромосомы стремительно дрейфуют к ближайшему полюсу митотического веретена со скоростью, достигающей 25 мкм/мин. Вблизи полюсов деления повышается вероятность взаимодействия новосинтезированных плюс-концов микротрубочек веретена с кинетохорами хромосом. В результате такого взаимодействия кинетохорные микротрубочки стабилизируются от спонтанной деполимеризации, а их рост отчасти обеспечивает отдаление соединенной с ними хромосомы в направлении от полюса к экваториальной плоскости веретена. С другой стороны хромосому настигают тяжи микротрубочек, идущие от противоположного полюса митотического веретена. Взаимодействуя с кинетохором, они также участвуют в движении хромосомы. В результате сестринские хроматиды оказываются связанными с противоположными полюсами веретена. Усилие, развиваемое микротрубочками от разных полюсов, не только стабилизирует взаимодействие этих микротрубочек с кинетохорами, но также, в конечном счёте, приводит каждую хромосому в плоскость метафазной пластинки.

В клетках млекопитающих прометафаза протекает, как правило, в течение 10—20 минут. В нейробластах кузнечика данная стадия занимает всего 4 минуты, а в эндосперме Haemanthus и в фибробластах тритона — около 30 минут.

Метафаза В завершении прометафазы хромосомы располагаются в экваториальной плоскости веретена примерно на равном расстоянии от обоих полюсов деления, образуя метафазную пластинку. Морфология метафазной пластинки в клетках животных, как правило, отличается упорядоченным расположением хромосом: центромерные участки обращены к центру веретена, а плечи — к периферии клетки. В растительных клетках хромосомы зачастую лежат в экваториальной плоскости веретена без строгого порядка.

Метафаза занимает значительную часть периода митоза, и отличается относительно стабильным состоянием. Все это время хромосомы удерживаются в экваториальной плоскости веретена за счёт сбалансированных сил натяжения кинетохорных микротрубочек, совершая колебательные движения с незначительной амплитудой в плоскости метафазной пластинки.

В метафазе, также как и в течение других фаз митоза, продолжается активное обновление микротрубочек веретена путём интенсивной сборки и деполимеризации молекул тубулина. Несмотря на некоторую стабилизацию пучков кинетохорных микротрубочек, происходит постоянная переборка межполюсных микротрубочек, численность которых в метафазе достигает максимума.

К окончанию метафазы наблюдается чёткое обособление сестринских хроматид, соединение между которыми сохраняется лишь в центромерных участках. Плечи хроматид располагаются параллельно друг другу, и становится отчетливо заметной разделяющая их щель.

Анафаза — самая короткая стадия митоза, которая начинается внезапным разделением и последующим расхождением сестринских хроматид в направлении противоположных полюсов клетки. Хроматиды расходятся с равномерной скоростью достигающей 0,5—2 мкм/мин., при этом они часто принимают V-образную форму. Их движение обусловлено воздействием значительных сил, оценочно 10 дин на хромосому, что в 10 000 раз превышает усилие, необходимое для простого продвижения хромосомы через цитоплазму с наблюдаемой скоростью.

Как правило, расхождение хромосом в анафазе состоит из двух относительно независимых процессов называемых анафазой А и анафазой В.

Анафаза А характеризуется расхождением сестринских хроматид к противоположным полюсам деления клетки. За их движение при этом отвечают те же силы, что ранее удерживали хромосомы в плоскости метафазной пластинки. Процесс расхождения хроматид сопровождается сокращением длины деполимеризующихся кинетохорных микротрубочек. Причем их распад наблюдается преимущественно в области кинетохоров, со стороны плюс-концов. Вероятно, деполимеризация микротрубочек у кинетохоров либо в области полюсов деления является необходимым условием для перемещения сестринских хроматид, так как их движение прекращается при добавлении таксола или тяжёлой воды, оказывающих стабилизирующее воздействие на микротрубочки. Механизм, лежащий в основе расхождения хромосом в анафазе А, пока остается неизвестным.

Во время анафазы В расходятся сами полюса деления клетки, и, в отличии от анафазы А, данный процесс происходит за счёт сборки полюсных микротрубочек со стороны плюс-концов. Полимеризующиеся антипараллельные нити веретена при взаимодействии отчасти и создают расталкивающее полюса усилие. Величина относительного перемещения полюсов при этом, также как и степень перекрывания полюсных микротрубочек в экваториальной зоне клетки сильно варьирует у особей разных видов. Помимо расталкивающих сил, на полюса деления воздействуют тянущие силы со стороны астральных микротрубочек, которые создаются в результате взаимодействия с динеино-подобными белками на плазматической мембране клетки.

Последовательность, продолжительность и относительный вклад каждого из двух процессов, слагающих анафазу, могут быть крайне различны. Так в клетках млекопитающих анафаза В начинается сразу вслед за началом расхождения хроматид к противоположным полюсам и продолжается вплоть до удлинения митотического веретена в 1,5—2 раза по сравнению с метафазным. В некоторых других клетках анафаза В начинается только после того как хроматиды достигают полюсов деления. У некоторых простейших в процессе анафазы В веретено удлиняется в 15 раз по сравнению с метафазным. В растительных клетках анафаза В отсутствует.

Телофаза рассматривается как заключительная стадия митоза; за её начало принимается момент остановки разделённых сестринских хроматид у противоположных полюсов деления клетки. В ранней телофазе наблюдается деконденсация хромосом и, следовательно, увеличение их в объёме. Вблизи сгруппированных индивидуальных хромосом начинается слияние мембранных пузырьков, что дает начало реконструкции ядерной оболочки. Материалом для построения мембран новообразованных дочерних ядер служат фрагменты изначально распавшейся ядерной мембраны материнской клетки, а также элементы эндоплазматического ретикулума. При этом отдельные пузырьки связываются с поверхностью хромосом и сливаются воедино. Постепенно восстанавливается наружная и внутренняя ядерные мембраны, восстанавливаются ядерная ламина и ядерные поры. В процессе восстановления ядерной оболочки дискретные мембранные пузырьки, вероятно, соединяются с поверхностью хромосом без распознавания специфических последовательностей нуклеотидов, так как в результате проведенных экспериментов было выявлено, что восстановление ядерной мембраны происходит вокруг молекул ДНК, заимствованных у любого организма, даже у бактериального вируса. Внутри заново сформировавшихся клеточных ядер хроматин переходит в дисперсное состояние, возобновляется синтез РНК, и становятся различимыми ядрышки.

Параллельно с процессами образования ядер дочерних клеток в телофазе начинается и заканчивается разборка микротрубочек веретена деления. Деполимеризация протекает в направлении от полюсов деления к экваториальной плоскости клетки, от минус-концов к плюс-концам. При этом дольше всего сохраняются микротрубочки в средней части веретена деления, которые образуют остаточное тельце Флеминга.

Окончание телофазы преимущественно совпадает с разделением тела материнской клетки — цитокинезом. При этом образуются две или более дочерние клетки. Процессы, ведущие к разделению цитоплазмы, берут свое начало еще в середине анафазы и могут продолжаться после завершения телофазы. Митоз не всегда сопровождается разделением цитоплазмы, поэтому цитокинез не классифицируется в качестве отдельной фазы митотического деления и обычно рассматривается в составе телофазы.

Различают два основных типа цитокинеза: деление поперечной перетяжкой клетки и деление путём образования клеточной пластинки. Плоскость деления клетки детерминируется положением митотического веретена и проходит под прямым углом к длинной оси веретена.

При делении поперечной перетяжкой клетки место разделения цитоплазмы закладывается предварительно ещё в период анафазы, когда в плоскости метафазной пластинки под мембраной клетки возникает сократимое кольцо из актиновых и миозиновых филаментов. В дальнейшем, вследствие активности сократимого кольца, образуется борозда деления, которая постепенно углубляется вплоть до полного разделения клетки. По окончании цитокинеза сократимое кольцо полностью распадается, а плазматическая мембрана стягивается вокруг остаточного тельца Флеминга, состоящего из скопления остатков двух групп полюсных микротрубочек, тесно упакованных вместе с материалом плотного матрикса.

Деление путём образования клеточной пластинки начинается с перемещения мелких ограниченных мембраной пузырьков по направлению к экваториальной плоскости клетки. Здесь они сливаются, образуя дисковидную, окружённую мембраной структуру — раннюю клеточную пластинку. Мелкие пузырьки происходят в основном из аппарата Гольджи и перемещаются к экваториальной плоскости вдоль остаточных полюсных микротрубочек веретена деления, образующих цилиндрическую структуру, называемую фрагмопластом. По мере расширения клеточной пластинки микротрубочки раннего фрагмопласта попутно перемещаются к периферии клетки, где за счёт новых мембранных пузырьков продолжается рост клеточной пластинки вплоть до её окончательного слияния с мембраной материнской клетки. После окончательного разделения дочерних клеток в клеточной пластинке откладываются микрофибриллы целлюлозы, завершая образование жёсткой клеточной стенки.

Соседние файлы в предмете Биология