- •Работа №7 исследование резонансных явлений в простых электрических цепях
- •7.1. Подготовка к работе
- •7.2. Экспериментальные исследования резонанса напряжений с применением моделирующих компьютерных программных средств Multisim.
- •Вопрос 1. Как, используя эквивалентные схемы цепи для , и , определить значения на этих частотах и проконтролировать результаты эксперимента? Приведите схемы замещения для этих частот.
- •Вопрос 2. В чем сходство и в чем различие данных, измеренных и рассчитанных в 7.2.1 и 7.2.2?
- •Вопрос 3. В чем сходство и в чем различие данных 7.2.2 и 7.2.3? Почему диапазон изменения частоты другой?
- •7.3. Исследование резонанса токов и ачх параллельного контура
- •Вопрос 4. Как, используя эквивалентные схемы цепи для и определить значения ачх на этих частотах и проконтролировать результаты эксперимента?
- •7.3.2. Исследование резонанса токов и ачх контура с большими потерями
- •Вопрос 5. В чем сходство и в чем различие данных, измеренных и рассчитанных в 7.3.1 и 7.3.2?
- •7.3.3. Исследование влияния изменения емкости на характеристики контура.
- •Вопрос 6. В чем сходство и в чем различие данных 7.3.2 и 7.3.3? Почему диапазон изменения частоты иной?
- •7.4. Требования к отчету
Работа №7 исследование резонансных явлений в простых электрических цепях
Соответствует работе № 7 классической лаборатории цепей [1].
7.1. Подготовка к работе
Цель работы: исследование резонанса и амплитудно-частотных характеристик (АЧХ) последовательного и параллельного колебательных контуров.
Резонанс – такое состояние -цепи в установившемся синусоидальном режиме, при котором напряжение и ток цепи совпадают по фазе.
Схемы исследуемых цепей приведены на рис. 7.1. Резонанс в цепи рис. 7.1, а называют резонансом напряжений, а цепь – последовательным контуром; резонанс в цепи рис. 7.1, б – резонансом токов, а цепь – параллельным контуром. При резонансе вещественными становятся комплексное сопротивление последовательной цепи
и, соответственно, комплексная проводимость параллельной цепи
Отсюда резонансная частота приведенных на рис. 7.1, а, б цепей:
(7.1)
При резонансе модуль проводимости цепи на рис. 7.1, а становится максимальным:
(7.2)
Это значит, что при максимальным будет ток:
(7.3)
Напряжения на емкости и индуктивности в цепи на рис. 7.1, а при резонансе компенсируют друг друга и могут быть во много раз больше напряжения источника. Отношение действующего значения напряжения любого из реактивных элементов к напряжению источника при называют добротностью последовательного контура:
(7.4)
где – характеристическое сопротивление контура.
Если в режиме резонанса измерены напряжения на входе и на емкости , ток и резонансная частота , то из приведенных соотношений можно определить все параметры последовательного контура: сопротивление из (7.3), добротность и характеристическое сопротивление из (7.4), а емкость и индуктивность из (7.1) и (7,4):
(7.5)
Параллельный -контур на рис. 7.1, б дуален последовательному. При резонансе токов максимальным становится модуль его комплексного сопротивления:
(7.6)
Это значит, что при максимальным будет напряжение на входе цепи:
(7.7)
Токи, протекающие через индуктивность и емкость в цепи на рис. 7.1, б, при резонансе компенсируют друг друга и могут во много раз быть больше тока источника. Отношение действующего значения тока любого из реактивных элементов к току источника при называют добротностью параллельного контура:
(7.8)
Если в режиме резонанса измерены входной ток и ток емкости , напряжение и резонансная частота , то из (7.7) можно определить , из (7.8) – и , а из (7.5) – и .
При отклонении частоты от резонансной реактивное сопротивление последовательного контура и реактивная проводимость параллельного не равны нулю, поэтому ток первого и напряжение второго уменьшаются.
Амплитудно-частотная характеристика (резонансная кривая) последовательного контура есть зависимость модуля проводимости (7.2) от частоты:
(7.9)
Для параллельного контура, дуально, АЧХ – это зависимость модуля сопротивления (7.6) от частоты:
. (7.10)
П
f
“Острота” резонансной кривой определяет частотную избирательность цепи. По АЧХ можно определить добротность контура. Она равна отношению к полосе пропускания , измеренной по уровню 0,707 от максимума АЧХ:
. (7.11)