
- •Федеральное агентство по образованию
- •СОдержАние
- •I. Теоретическая часть предмет биохимии
- •1. Химия белков
- •1.1. Методы выделения и очистки белков
- •1.2. Функции белков
- •1.3. Аминокислотный состав белков
- •1.4. Структурная организация белков
- •1.5. Физико-химические свойства белков
- •1.6. Классификация белков
- •1.6.1. Простые белки
- •1. Альбумины и глобулины.
- •2. Протамины и гистоны.
- •3. Проламины и глютелины.
- •1.6.2. Сложные белки
- •Структура нуклеиновых кислот
- •Контрольные вопросы
- •2. Ферменты
- •2.1. Химическая природа ферментов
- •2.2. Механизм действия ферментов
- •2.3. Кинетика ферментативных реакций
- •2.4. Свойства ферментов
- •2.5. Регуляция активности ферментов
- •1. Контроль количества фермента.
- •2. Контроль активности фермента.
- •2.2. Химическая модификация фермента
- •2.3. Аллостерическая регуляция
- •2.6. Классификация и номенклатура ферментов
- •2.7. Ферменты в медицине
- •2. Приобретенные энзимопатии.
- •Контрольные вопросы
- •3. Витамины
- •3.1. Жирорастворимые витамины
- •3.2. Водорастворимые витамины
- •Контрольные вопросы
- •4. Основные принципы организации биомембран
- •4.1. Строение и функции мембран
- •1. Фосфолипиды (до 90%) – глицерофосфолипиды и сфингофосфолипиды: фосфатидилхолин
- •Церамид
- •Галактозилцерамид
- •4.2. Транспорт веществ через мембрану
- •2. Облегченная диффузия
- •Контрольные вопросы
- •5. Механизмы передачи гормонального сигнала
- •Трансмембранная передача гормонального сигнала
- •Контрольные вопросы
- •6. Введение в метаболизм
- •6.1. Общая схема катаболизма
- •6.2. Биоэнергетика
- •6.3. Организация и функционирование дыхательной цепи
- •6.4. Разобщение окисления и фосфорилирования
- •6.5. Генерация свободных радикалов в клетке
- •6.6. Реакции общего пути катаболизма
- •6.6.1. Окислительное декарбоксилирование пвк
- •6.6.2. Цикл трикарбоновых кислот
- •Регуляция общего пути катаболизма
- •Контрольные вопросы
- •7. Обмен углеводов
- •7.1. Переваривание углеводов
- •7.2. Обмен гликогена
- •7.3. Гликолиз
- •7.4. Включение фруктозы и галактозы в гликолиз
- •7.5. Челночные механизмы
- •7.6. Цикл кори
- •7.7. Спиртовое брожение
- •7.8. Пентозофосфатный путь превращения глюкозы
- •7.9. Глюконеогенез
- •7.10. Регуляция обмена углеводов
- •Глюкоза → глюкозо-6-фосфат.
- •Пируват → оксалоацетат → фосфоенолпируват
- •7.11. Нарушения углеводного обмена Нарушение гидролиза и всасывания углеводов.
- •Гликогенозы
- •Нарушения промежуточного обмена углеводов
- •Гипер- и гипогликемия
- •Глюкозурия
- •Контрольные вопросы
- •II. Лабораторный практикум Работа 1. Анализ аминокислот и белков
- •1. Качественный анализ аминокислотных смесей методом бумажной хроматографии.
- •2. Цветные реакции на белки.
- •3. Реакции осаждения белков.
- •3. 1. Осаждение белков при нагревании.
- •3.2. Осаждение белков солями тяжелых металлов.
- •3.3. Осаждение белков концентрированными минеральными кислотами.
- •3.5. Осаждение белков органическими кислотами.
- •Контрольные вопросы
- •Работа 2. Сложные белки – фосфопротеины и гликопротеины
- •2. Гликопротеины.
- •1.2. Реакция с дифениламином.
- •2.Хромопротеины.
- •2.1. Бензидиновая проба на геминовую группировку гемоглобина.
- •Контрольные вопросы
- •4. Специфичность действия ферментов амилазы и сахаразы.
- •Контрольные вопросы
- •Работа 5. Определение активности ферментов
- •1. Действие активаторов и ингибиторов на α-амилазу слюны.
- •2. Определение активности α-амилазы слюны по Вольгемуту.
- •Контрольные вопросы
- •Работа 6. Витамины
- •9.1. Взаимодействие витамина с с к3[Fe(cn)6].
- •9.2. Реакция с метиленовой синью.
- •Контрольные вопросы
- •Работа 7. Оксидоредуктазы
- •1. Обнаружение дегидрогеназы (ксантиноксидаза, альдегиддегидрогеназа, кф 1.1.3.22) в молоке (реакция Шардингера).
- •2. Сопоставление редокс-потенциалов рибовлавина и метиленового синего.
- •3. Определение каталазы по а.Н. Баху и а.И. Опарину.
- •Контрольные вопросы
- •Работа 8. Обмен углеводов
- •3.1. Реакция Троммера с гидроксидом меди.
- •3.2. Выявление фруктозурии пробой Селиванова.
- •3.3. Энзиматический метод полуколичественного определения глюкозы в моче с помощью тест-полоски "glucophan".
- •Контрольные вопросы
- •Литература
3. Проламины и глютелины.
Проламины - белки растительного происхождени. Содержат 20-25% глутаминовой кислоты и 10-15% пролина. Растворимы в 60-80% водном растворе этанола, в то время как все остальные простые белки в этих условиях обычно выпадают в осадок.
Глютелины - простые белки, содержатся в семенах злаков, в зелёных частях растений. Для них характерно высокое содержание глутаминовой кислоты и наличие лизина. Растворимы в разбавленных растворах щелочей. Глютелины - запасные белки.
1.6.2. Сложные белки
1. Хромопротеины (от греч. chroma - краска) состоят из простого белка и связанного с ним окрашенного небелкового компонента. Различают гемопротеины и флавопротеины. Они участвуют в таких процессах, как дыхание, транспорт кислорода и диоксида углерода, окислительно-восстановительные реакции, свето- и цветовосприятие и др.
К группе гемопротеинов относятся гемоглобин, миоглобин, цитохромы, каталаза, пероксидаз. Все они содержат железопорфирины, но различные по составу и структуре белки, и выполняют разнообразные биологические функции. Видовые различия гемоглобина обусловлены глобином.
Рассмотрим строение гемоглобина – белка крови. Небелковым компонентом гемоглобина является гем - пигмент, придающий крови красный цвет. Основу его структуры составляет протопорфирин IX (рис. 5). В центре гема расположен атом железа, связанный с двумя атомами азота ковалентно и с двумя другими - координационными связями. Гем «обернут» одной полипептидной цепью. В молекуле гемоглобина взрослого человека НbА (от англ. adult- взрослый) содержатся четыре полипептидные цепи, которые вместе составляют белковую часть молекулы – глобин (рис. 6). Две α-цепи содержат по 141 аминокислотному остатку, две β-цепи - по 146.
|
|
Рис. 5. Гем |
Рис. 6. Гемоглобин |
В крови взрослого человека присутствуют также гемоглобин НbА2 (2α, 2δ цепи, 2,5%) и НbA3 (менее 1%, отличается строением -цепи).
Известен фетальный гемоглобин (гемоглобин новорожденных) HbF, состоящий из 2 α- и 2 γ-цепей. Гемоглобин F обладает повышенным сродством к кислороду и позволяет сравнительно малому объёму крови плода выполнять кислородоснабжающие функции более эффективно. Кровь новорожденного содержит до 80% HbF, к концу 1-го года жизни он почти целиком заменяется на НbА.
Болезни гемоглобинов (более 200) называют гемоглобинозами.
1. Гемоглобинопатии, в основе которых лежит наследственное изменение структуры какой-либо цепи нормального гемоглобина. В крови человека открыто около 150 различных типов мутантных гемоглобинов.
Аномальные гемоглобины различаются по физико-химическим свойствам (электрофоретическая подвижность, растворимость, изоэлектрическая точка, сродство к кислороду).
Классический пример гемоглобинопатии - серповидно-клеточная анемия, распространенная в странах Южной Америки, Африки и Юго-Восточной Азии. Химический дефект сводится к замене глутаминовой кислоты в 6-м положении с N-конца на валин в β-цепях молекулы гемоглобина HbS. Это результат мутации в молекуле ДНК. У HbS снижены растворимость и сродство к кислороду. Эритроциты в условиях низкого парциального давления кислорода принимают форму серпа. HbS после отдачи кислорода в тканях превращается в плохо растворимую дезоксиформу и выпадает в осадок в виде веретенообразных кристаллов. Они деформируют клетку и приводят к гемолизу. Гетерозиготная форма аномалии протекает бессимптомно или сопровождается легкой гемолитической анемией. У гомозиготных особей уже с первых месяцев жизни развивается тяжелая форма серповидноклеточной анемии. Болезнь протекает остро, и дети часто умирают в раннем возрасте.
2. Талассемии - группа заболеваний с наследственным нарушением синтеза одной из цепей глобина. Различают α- и β-талассемии. Гемоглобинопатия Н - один из вариантов -талассемии - проявляется гемолитической анемией, выпадением в осадок гемоглобин Н, увеличением селезенки, тяжелыми костными изменениями.
3. Железодефицитные анемии - нарушение синтеза гемоглобина вследствие дефицита железа. Основными причинами являются кровопотери и недостаток богатой гемом пищи - мяса и рыбы.
Производные гемоглобина
Оксигемоглобин HbO2. Молекулярный кислород присоединяется к каждому гему Hb при помощи координационных связей железа. Присоединение каждой молекулы кислорода облегчает присоединение последующей. Эта аллостерическая зависимость получила название эффекта Бора. Оксигемоглобин, попадая в ткани, теряет кислород, становясь дезоксигемоглобином.
Карбгемоглобин HbCO2 соединение гемоглобина с углекислым газом. Он нестоек и быстро диссоциирует в легочных капиллярах с отщеплением СО2.
Карбоксигемоглобин HbCO - продукт присоединения оксида углерода CO (угарного газа) к гемоглобину. Гемоглобин имеет высокое сродство к СО и прочно с ним связывается. Гемоглобин теряет способность связывать кислород, и наступает смерть от удушья.
Метгемоглобин MtHb - форма гемоглобина, в которой железо гема находится в трёхвалентном состоянии. Не способен переносить кислород. Образуется из свободного гемоглобина под действием различных окислителей, а в организме - при некоторых отравлениях.
Метгемоглобинемия - появление в крови метгемоглобина. Выделяют наследственные и приобретенные метгемоглобинемии. Наследственные развиваются в результате наличия нестабильных или аномальных гемоглобинов. Среди приобретенных могут быть токсические метгемоглобинемии экзогенного происхождения, возникающие при воздействии ряда химических веществ (нитраты, нитриты, анилин, некоторые лекарственные препараты), и эндогенного происхождения, развивающиеся вследствие нарушения продукции и всасывания нитратов при энтероколитах. При значительной метгемоглобинемии возникает кислородное голодание (гипоксия).
Методом качественного определения различных производных гемоглобина является исследование их спектров поглощения.
Миоглобин - глобулярный белок, осуществляющий в мышцах запасание молекулярного кислорода и передачу его окислительным системам клеток. Состоит из одной полипептидной цепи. Как и в гемоглобине, активным центром молекулы, связывающим O2, является гем. Миоглобин определяет цвет мышц.
К хромопротеинам относятся также ферменты каталаза, пероксидаза, цитохромы.
Флавопротеины – хромопротеины, простетические группы которых представлены производными изоаллоксазина - флавинмононуклеотидом (ФМН) и флавинадениндинуклеотидом (ФАД). Флавопротеины входят в состав оксидоредуктаз - ферментов, катализирующих окислительно-восстановительные реакции в клетке.
2. Липопротеины состоят из белка и простетической группы, представленной каким-либо липидом (нейтральные жиры, свободные жирные кислоты, фосфолипиды, холестериды). Липопротеины широко распространены и выполняют разнообразные биологические функции. Представители липопротеинов - белок ткани легких, липовителлин желтка куриного яйца и т.д.
Липопротеины присутствуют в свободном состоянии (главным образом в плазме крови). Липопротеины сыворотки крови содержат гидрофобное липидное ядро, окруженное полярными липидами и оболочкой из белков, получивших название апобелки. Они обеспечивают транспорт водонерастворимых липидов.
Липиды, ковалентно связанные с белком, служат якорем, с помощью которого белки прикрепляются к мембране. Это т.н. структурированные липопротеины (липиды мембран клетки, миелиновой оболочки нервных волокон).
3. Фосфопротеины - сложные белки, в состав которых в качестве небелкового компонента входит фосфорная кислота, присоединенная к полипептидной цепи сложноэфирной связью через остатки серина или треонина. Возможен также ионный тип связи.
К фосфопротеинам относятся казеиноген молока, овальбумин белка куриного яйца, ряд ферментов, например, РНК-полимеразы. Большое количество фосфопротеинов содержится в клетках ЦНС.
Фосфопротеины являются ценным источником энергетического и пластического материала в процессе эмбриогенеза и постнатального роста и развития организма, участвуют в регуляции ядерной активности клетки, транспорте ионов и окислительных процессах в митохондриях.
4. Гликопротеины - сложные белки, содержащие, помимо простого белка или пептида, линейные или разветвленные гетероолигосахаридные цепи, содержащие от 2 до 15 остатков гексоз, пентоз и конечный углевод (N-ацетилгалактозамин или др.). Углеводный компонент соединяется с белком ковалентными связями.
Гликопротеины - белки плазмы крови (кроме альбуминов), некоторые ферменты, муцин слюны, белки хрящевой и костной тканей. Гликопротеины являются важным структурным компонентом клеточных мембран. Они обеспечивают клеточную адгезию, молекулярное и клеточное узнавание. Углеводные компоненты, помимо информативной функции, повышают стабильность молекул, в состав которых они входят, к различного рода химическим, физическим воздействиям и предохраняют их от действия протеиназ.
Гликопротеины мембран эритроцитов предопределяют группу крови у человека. К типичным гликопротеинам относятся интерфероны, иммуноглобулины.
Интерфероны - ингибиторы размножения многих типов вирусов. Они образуются в клетке в ответ на внедрение вирусной нуклеиновой кислоты. Интерфероны считаются основными защитными белками не только против вирусной инфекции, но и при опухолевых поражениях.
Иммуноглобулины, или антитела, выполняют защитную функцию, обезвреживая поступающие в организм чужеродные вещества - антигены любой химической природы. Выделяют три основных класса иммуноглобулинов: IgG, IgA, IgM; минорные классы иммуноглобулинов плазмы человека обозначаются как IgD и IgE. Иммуноглобулины разных классов отличаются по молекулярной массе, по концентрации в крови, по биологическим свойствам.
При ревматоидных артритах часто синтезируются аномальные антитела с необычайно короткими сахарными цепями, что вызывает стимуляцию иммунной системы против самого организма.
Протеогликаны - комплексы белка и гликозаминогликанов. Углевод в этих соединениях составляет основную часть молекулы (до 95 %). Типичными гликозаминогликанами являются гиалуроновая кислота (ее основная функция - в соединительной ткани - связывание воды) и гепарин, участвующий в регуляции свертывания крови.
5. Металлопротеины, помимо белка, содержат ионы какого-либо одного металла или нескольких металлов.
1. Белки, содержащие негемовое железо.
Ферритин (около 20% железа) сосредоточен главным образом в селезенке, печени, костном мозге. Выполняет роль депо железа в организме.
Трансферрин сыворотки крови (около 0,13% железа) транспортирует ионы железа в ретикулоциты, в которых осуществляется биосинтез гемоглобина.
2. Металлоферменты. Это белки, обладающие ферментативной активностью и содержащие катионы металлов. В металлоферментах связь белка с металлом более прочная. Ферменты, активируемые ионами металлов, менее прочно связаны с металлами.
АТФ-аза содержит Na, К, Са, Мg, алкогольдегидрогеназа – Zn, цитохромоксидаза – Cu, протеиназы - Mg, К.
6. Нуклеопротеины (НП) - устойчивые комплексы нуклеиновых кислот с белками.
Нуклеиновые кислоты (НК) - ДНК и РНК – полимеры нуклеотидов.
ДНК находится в основном в ядре клетки и в митохондриях.
РНК обнаруживается во всех частях клетки. Различают мРНК (синтезируется на ДНК, определяет порядок аминокислот в молекуле белка), рРНК (входит в состав рибосом), тРНК (транспортирует аминокислоты к месту синтеза белка). НК обеспечивают хранение и передачу наследственной информации путем программирования синтеза клеточных белков.
В состав нуклеиновых кислот входят азотистые основания (ДНК - аденин, гуанин, цитозин, тимин, РНК - аденин, гуанин, цитозин, урацил), углеводы (дезоксирибоза и рибоза соответственно), остатки фосфорной кислоты.
Нуклеотиды (рис. 7) состоят из трех компонентов: пиримидинового или пуринового основания, пентозы (рибозы) и фосфорной кислоты. Нуклеотиды – нуклеозидфосфаты.
-
Рис. 7. Строение нуклеотида
ДНК, выделенная из разных тканей одного и того же вида, имеет одинаковый состав азотистых оснований. Закономерности состава и количественного содержания азотистых оснований установлены впервые Э. Чаргаффом и были названы правилами Чаргаффа:
1. Молярная доля пуриновых оснований равна молярной доле пиримидиновых оснований: А + Г = Ц + Т.
2. Количество аденина и цитозина равно количеству гуанина и тимина:
А + Ц = Г + Т.
3. Количество аденина равно количеству тимина, количество гуанина равно количеству цитозина: А = Т, Г = Ц.
4. Коэффициент специфичности равен (Г + Ц)/(А + Т) (у животных 0,54-0,94, у микроорганизмов 0,45-2,57).