
- •Издательство Томского политехнического университета Томск 2006
- •Предисловие
- •1. Теоретические основы общей микробиологии
- •1.1. Структурно-функциональная характеристика микробной клетки
- •1.2. Рост и размножение бактерий
- •1.3. Спорообразование у бактерий
- •1.4 Движение бактерий
- •2. Физиология прокариот
- •2.1. Метаболизм бактерий: конструктивный и энергетический обмен
- •2.2. Ферменты и регуляция клеточного метаболизма прокариот
- •2.3. Химический состав бактерий
- •2.4. Потребность микроорганизмов в питательных веществах
- •2.5. Питание бактерий
- •2.6. Дыхание бактерий
- •2.7. Брожение
- •3. Влияние внешних условий на жизнедеятельность прокариот
- •3.1. Влияние температуры
- •3.2. Отношение к молекулярному кислороду
- •3.3. Влияние излучения
- •3.4. Влияние активной реакции среды
- •3.5. Соленость
- •3. 6. Приспособление к неблагоприятным воздействиям
- •4. Систематика и классификация прокариот
- •4.1. Филогенетическая систематика
- •Группы прокариотных организмов (по Берги) [25]
- •4.2. Функциональная классификация прокариот
- •4.2.1. Физиологические группы бактерий по типам питания
- •4.2.1. Экофизиологические группы
- •5. Ультрамикробы
- •6. Морфофизиологическая характеристика эукариотов природных вод
- •6.1. Водоросли
- •6.2. Грибы
- •6.3. Простейшие
- •6.4. Черви (Vermes)
- •6.5. Низшие ракообразные
- •6.6. Миксобактерии
- •7. Распространение микробоорганизмов в природе
- •8. Биоценозы пресных водоемов, группировка водоемов по экологическим признакам
- •9. Микробные соосбщества как фактор самоочищения водоемов и приемы технического воздействия на микробное население воды
- •10. Инфекция и основные пути ее распространения
- •11. Микробное загрязнение и санитарно-биологические показатели качества воды
- •Нормативы для питьевой воды по микробиологическим и паразитологическим показателям
- •12. Участие пркариотных микроорганизмов в круговороте химических элементов
- •12.1. Круговорот углерода и гидрогеохимические процессы
- •12.2. Круговорот серы и гидрогеохимические процессы
- •12.3. Круговорот азота и гидрогеохимические процессы
- •13. Роль микроорганизмов в коррозии металлов
- •14. Образование отложений и обрастаний в водопроводных сооружениях
- •15. Очистка сточных вод с помощью микроорганизмов
- •15.1. Аэробные процессы очистки сточных вод
- •15.1.1. Биологические фильтры
- •Нагрузка на биологические фильтры [33]
- •15.1.2. Аэротенки
- •15.1.3. Схема работы аэротенка
- •15.1.4 Контроль за работой аэротенков
- •15.1.5. Роль и значение отдельных групп организмов в механизме биохимической очистки сточных вод
- •Степень относительного развития различных групп простейших и коловраток при различной работе сооружений
- •15.1.6. Биологические пруды
- •15.1.7. Почвенные методы очистки сточных вод
- •15.1.8. Эффективность различных аэробных методов очистки сточных вод
- •15.2. Анаэробные процессы очистки сточных вод
- •15.2.1. Механизм метанового брожения
- •Количество живых клеток в 1 г при 95%-й влажности
- •15.2.2. Очистные сооружения
- •(Цифрами указана влажность бродящего осадка)
- •Значение коэффициента n при различной влажности загружаемого осадка
- •Суточная доза загружаемого в метантенк осадка различной влажности
- •16. Методы работы с микроорганизмами
- •Библиографический список
3.2. Отношение к молекулярному кислороду
Кислород широко распространен в природе, находясь как в связанном, так и в свободном состоянии. В первом случае он входит в состав молекул воды, органических и неорганических соединений. Во втором – присутствует в современной атмосфере в виде молекулярного кислорода (О2), объемная доля которого составляет 21%. Кислород является обязательным химическим компонентом любой клетки. Подавляющее большинство организмов удовлетворяет свои потребности в этом элементе, используя обе формы кислорода [15].
При выращивании бактерий р. Рseudomonas в присутствии 18О2 и Н218О источником приблизительно 10% кислорода, входящего в состав клеточного материала, служил газообразный кислород, 50–60% клеточного кислорода происходило из воды. Остальной кислород в клетку поставляли органические и неорганические компоненты питательной среды (глюкоза, фосфаты, нитраты, сульфаты и др.).
В мире прокариот существуют значительные различия в отношении организмов к молекулярному кислороду [37]. По отношению к нему все прокариотные организмы могут быть разделены на несколько физиологических групп. Прокариоты, для роста которых О2 необходим, называют облигатными (обязательными) аэробами. К ним относится большинство прокариотных организмов. Среди облигатных аэробов обнаружены существенные различия в отношении к уровню молекулярного кислорода в среде. Некоторые представители этой группы не способны к росту при концентрации О2, равной атмосферной (21%), но могут расти, если содержание О2 в окружающей среде будет значительно ниже (порядка 2%). Такие облигатно аэробные прокариоты получили название микроаэрофилов.
Потребность прокариот в низкой концентрации О2 в окружающей среде часто связана с их метаболическими особенностями. Многие аэробные азотфиксирующие бактерии могут расти в среде с молекулярным азотом только при концентрации О2 ниже 2%, т. е. как микроаэрофилы, а в присутствии связанного азота, например аммонийного, – на воздухе при концентрации О2 21%. Это объясняется ингибирующим действием молекулярного кислорода на активность нитрогеназы – ферментного комплекса, ответственного за фиксацию N2. Аналогичная картина обнаружена у многих водородокисляющих бактерий. На среде с органическими соединениями в качестве источника энергии они хорошо растут при атмосферном содержании О2. Если источником энергии является окисление молекулярного водорода, эти же бактерии для роста требуют низкой концентрации О2. Последнее связывают с инактивацией молекулярным кислородом гидрогеназы фермента, катализирующего использование Н2.
Наконец, среди облигатных аэробов существуют значительные различия в устойчивости к высоким уровням О2 в среде. По имеющимся данным, 100%-й молекулярный кислород подавляет рост всех облигатных аэробов. Многие аэробные бактерии могли формировать колонии на поверхности твердой питательной среды в атмосфере, содержащей 40% О2, но рост их прекращался, когда содержание О2 в атмосфере доходило до 50%.
Известны прокариоты, для метаболизма которых О2 не нужен, т.е. не нужно участия молекулярного кислорода. Такие организмы получили название облигатных анаэробов. К ним относятся метанобразующие, сульфатвосстанавливающие, маслянокислые и некоторые другие бактерии. До сравнительно недавнего времени считали, что облигатные анаэробы могут получать энергию только в процессах брожения. В настоящее время известно много облигатно анаэробных прокариот, которые произошли от аэробов в результате вторичного приспособления к анаэробным условиям, приведшего к потере способности пользовать О2 в качестве конечного акцептора электронов в процессе дыхания. Такие облигатные анаэробы получают энергию в процессе переноса электронов по цепи переносчиков на СО2, SО42- фумарат и другие акцепторы.
В ряду облигатно анаэробных прокариот, не включающих О2-метаболические реакции, существует широкий спектр степени устойчивости к молекулярному кислороду, находящемуся во внешней среде. Многие из облигатных анаэробов не выносят присутствия даже незначительных количеств молекулярного кислорода в среде и быстро погибают. Часто такие организмы называют строгими анаэрбами. К числу строгих анаэробов относятся представители рода Bacteroides, Fusobacterium, Butrivibrio, Methanobacterium, Methanosarcina и др. Маслянокислые бактерии относятся также к группе облигатных анаэробов, но среди них есть виды, умеренно (С1оstridium tetani, С. саrnis, С. tertium, С. sporogenes) или достаточно высоко (С. реrfrigenes, С. асеtobutilicum) толерантные к О2. Наконец, молочнокислые бактерии, обладающие метаболизмом только анаэробного типа, могут расти в присутствии воздуха, и выделены в отдельную группу аэротолерантных анаэробов.
Хотя облигатно анаэробные бактерии в целом очень чувствительны к О2, они могут в природе находиться в аэробных зонах. Широко распространение представителей рода С1оstridium в местах с высоким парциальным давлением О2 объясняется наличием у них эндоспор, нечувствительных к молекулярному кислороду. Однако и многие образующие споры строго анаэробные прокариоты обнаружены в природе в местах, где наблюдается активное развитие облигатных аэробов. Вероятно, совместное развитие с облигатными аэробами, активно потребляющими молекулярный кислород, приводящее к образованию зон с низкой концентрацией О2, создает возможности и для развития строго анаэробных видов.
Существуют прокариотные организмы, которые могут расти как в аэробных, так и в анаэробных условиях. Изучение этого явления показало, что природа его различна. Бактерии, не нуждающиеся в О2 (последний не участвует в осуществляемых или метаболических реакциях), но способные расти в его присутствии, являются по типу осуществляемого ими метаболизма облигатными анаэробами, устойчивыми к О2 внешней среды. Примером таких организмов служат молочнокислые бактерии. Многие прокариоты, относящиеся к этой группе, приспособились в зависимости от наличия или отсутствия в среде О2 переключаться с одного метаболического пути на другой, например, с дыхания на брожение и наоборот. Такие организмы получили название факультативных анаэробов, или факультативных аэробов. Представителями этой физиологической группы прокариот являются энтеробактерии. В аэробных условиях они получают энергию в процессе дыхания. В анаэробных условиях источником энергии для них служат процессы брожения или так называемого «анаэробного» дыхания, когда электроны по электронтранспортной цепи поступают не на молекулярный кислород, а на нитрат или фумарат.
Потребность в О2 у аэробов определяется его участием в энергетических и конструктивных процессах. В первом случае О2 служит обязательным конечным акцептором электронов, во втором – участвует в реакциях (или единственной реакции) на пути многоступенчатого преобразования клеточных метаболитов или экзогенных субстратов. У облигатных аэробов большая часть О2 используется в качестве конечного акцептора электронов в реакциях, катализируемых цитохромоксидазами. Меньшая часть включается в молекулы с помощью ферментов, получивших общее название оксигеназ. В клетках факультативных анаэробов также содержатся цитохромоксидазы. У облигатных анаэробов нет ферментов, катализирующих взаимодействие с О2, т.е. они получают энергию и метаболизируют все вещества без участия молекулярного кислорода.