Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-90 экзамен по биологии 2020.docx
Скачиваний:
247
Добавлен:
31.07.2020
Размер:
3.61 Mб
Скачать

5. Цитоплазматическая мембрана, строение, функции.

Наружная цитоплазматическая мембрана представляет собой тончайшую пленку. Ее толщина - порядка 7-10 нм. Просматривается пленка только в электронный микроскоп

Структура Какой состав имеет цитоплазматическая мембрана? Строение пленки достаточно разнообразно. В соответствии с химической организацией, она представляет собой комплекс белков и липидов. Цитоплазматическая мембрана клетки включает в себя бислой. Он выступает в качестве основы. Кроме этого, цитоплазматическая мембрана содержит холестерол и гликолипиды. Этим веществам свойственна амфипатричность. Другими словами, в них присутствуют гидрофобные ("боящиеся влаги") и гидрофильные ("любящие воду") концы. Последние (фосфатная группа) направлены наружу от мембраны, вторые (остатки от жирных кислот) ориентированы друг к другу. За счет этого и формируется липидный биполярный слой. Липидные молекулы обладают подвижностью. Они способны перемещаться в собственном монослое либо (что редко) из одного в другой.

Липидный слой может иметь состояние твердого или жидкого кристалла. Монослои отличаются асимметричностью. Это значит, что в них различен состав липидов. За счет этого свойства цитоплазматические мембраны обладают специфичностью даже в рамках одной клетки. Ко второму обязательному компоненту пленки относят белки. Многие из этих соединений могут перемещаться в мембранной плоскости либо совершать вращения вокруг собственной оси. При этом они не способны переходить из одной части бислоя в другую. Защита внутренней среды – основная задача, которую выполняет цитоплазматическая мембрана. Строение пленки, кроме этого, обеспечивает течение различных процессов. За выполнение тех или иных задач отвечают белки. Благодаря липидам обеспечиваются структурные особенности пленки.

Функции Барьерная. Защитная пленка обеспечивает активный, пассивный, избирательный, регулируемый обмен соединений с внешней средой. За счет избирательной проницаемости осуществляется отделение клетки и ее компартментов и снабжение их нужными веществами.

Транспортная. Сквозь пленку осуществляется переход соединений от клетки к клетке. Благодаря этому доставляются питательные соединения, удаляются конечные продукты обмена, происходит секреция разных веществ. Кроме этого, формируются ионные градиенты, на оптимальном уровне поддерживаются ионная концентрация и рН. Они необходимы для активной деятельности ферментов клетки.

Вспомогательные задачи

Матричная. Эта функция обеспечивает определенную ориентацию и взаиморасположение белков мембраны, а также оптимальное их взаимодействие. Механическая. За счет нее обеспечивается автономность клетки, внутренних структур. Также осуществляется соединение элемента с прочими аналогичными. Энергетическая. На фоне фотосинтеза в хлоропластах и при осуществлении клеточного дыхания в мембранах активны системы энергетического переноса. В них также участвуют и белковые соединения.

Рецепторная. Ряд белков, которые присутствуют в мембране, обеспечивает восприятие различных сигналов. К примеру, циркулирующие в крови стероиды оказывают воздействие только на те клетки-мишени, которые обладают соответствующими гормонам рецепторами. Химические соединения, обеспечивающие проведение импульсов (нейромедиаторы), также связываются с помощью особых белков клеток-мишеней.

Дополнительные сведения

Если какие-то частицы по тем или другим причинам не способны пройти сквозь фосфолипидный бислой (к примеру, вследствие гидрофильных свойств, поскольку внутри цитоплазматическая мембрана гидрофобна и такие соединения не пропускает, либо из-за больших размеров самих частиц), но они необходимы, то пройти они могут с помощью специальных белков-переносчиков (транспортеров) и белков-каналов. Либо проникновение их осуществляется посредством эндоцитоза. В процессе пассивного транспорта пересечение веществами липидного слоя происходит путем диффузии. При этом энергия не затрачивается. В качестве одного из вариантов такого механизма может выступать облегченная диффузия. В ходе нее облегчает прохождение вещества какая-нибудь специфическая молекула. У нее может присутствовать канал, способный пропускать только однотипные частицы. При активном транспорте затрачивается энергия. Это связано с тем, что данный процесс осуществляется против концентрационного градиента. Цитоплазматическая мембрана содержит особые белки-насосы, АТФазу в том числе, которая способствует активному вхождению калиевых и выведению натриевых ионов

Цитоплазматическая клеточная мембрана состоит из трех слоев:

  • Наружного – белкового;

  • Среднего – бимолекулярного слоя липидов;

  • Внутреннего – белкового.

Толщина мембраны 7,5-10 нм. Бимолекулярный слой липидов является матриксом мембраны. Липидные молекулы его обоих слоев взаимодействуют с белковыми молекулами, погруженными в них. От 60 до 75% липидов мембраны составляют фосфолипиды, 15-30% холестерин. Белки представлены в основном гликопротеинами. Различают интегральные белки, пронизывающие всю мембрану, ипериферические, находящиеся на наружной или внутренней поверхности.

Интегральные белки образуют ионные каналы, обеспечивающие обмен определенных ионов между вне- и внутриклеточной жидкостью. Они также являются ферментами, осуществляющими противоградиентный перенос ионов через мембрану.

Периферическими белками являются хеморецепторы наружной поверхности мембраны, которые могут взаимодействовать с различными физиологически активными веществами.

Функции мембран: 1. Обеспечивает целостность клетки как структурной единицы ткани. 2.Осуществляет обмен ионов между цитоплазмой и внеклеточной жидкостью. 3.Обеспечивает активный транспорт ионов и других веществ в клетку и из нее. 4.Производит восприятие и переработку информации, поступающей к клетке в виде химических и электрических сигналов.

Цитоплазматическая мембрана составляет в зависимости от вида бактерий 8–15 % сухой массы клетки. Химический состав ее представлен белково-липидным комплексом, в котором на долю белков приходится 50–75 %, на долю липидов – 15–50 %. Главным липидным компонентом мембраны являются фосфолипиды. Белковая фракция цитоплазматической мембраны представлена структурными белками, обладающими ферментативной активностью. Белковый состав цитоплазматической мембраны разнообразен. Цитоплазматическая мембрана бактерий по химическому составу в целом сходна с мембранами эукариотических клеток, но мембраны бактерий богаче белками, содержат необычные жирные кислоты и в основном не имеют стеринов. К строению цитоплазматической мембраны бактерий приложима жидкостно-мозаичная модель, разработанная для мембран эукариот. Согласно этой модели, мембрана состоит из бислоя липидов. Гидрофобные «концы» молекул фосфолипидов и триглицеридов направлены внутрь, а гидрофильные «головки» – наружу. В двойной слой липидов встроены

белковые молекулы . По расположению и характеру взаимодействия с липидным бислоем белки цитоплазматической мембраны подразделяются на периферические и интегральные.

Цитоплазматическая мембрана выполняет ряд существенных для клетки функций:

• поддержание внутреннего постоянства цитоплазмы клетки. Это достигается за счет уникального свойства цитоплазматической мембраны – ее полупроницаемости. Она проницаема для воды и низкомолекулярных веществ, но не проницаема для ионизированных соединений.Транспорт таких веществ внутрь клетки и выход наружу осуществляется за счет специализированных транспортных систем, которые локализуются в мембране. Такие транспортные системы функционируют за счет механизмов активного транспорта и системы специфических ферментов пермеаз;

• с вышеуказанной особенностью (полупроницаемостью) цитоплазматической мембраны связана и функция транспорта веществ в клетку и вывод их наружу;

• в цитоплазматической мембране локализуются электронтранспортная цепь и ферменты окислительного фосфорилирования;

• цитоплазматическая мембрана связана с синтезом клеточной стенки и капсулы за счет наличия в ней специфических переносчиков для образующих их молекул;

• в цитоплазматической мембране закреплены жгутики. Энергетическое обеспечение работы жгутиков связано с цитоплазматической мембраной.

У прокариот, принадлежащих к разным таксономическим группам, обнаружены мезосомы, которые образуются при впячивании цитоплазматической мембраны в цитоплазму. Существуют разные точки зрения относительно роли мезосом в бактериальной клетке. Согласно одной из них, мезосомы служат для усиления мембранзависимых функциональных активностей клетки, так как в мембранах, образующих мезосомы, находятся ферменты, участвующие в энергетическом метаболизме бактерий. Кроме того, считают, что мезосомы играют роль в репликации ДНК и последующем расхождении ее копий по дочерним клеткам. Мезосомы участвуют в процессе инициациии формирования поперечной перегородки при клеточном делении.

Цитоплазматическая мембрана (плазмалемма) — основная, универсальная для всех клеток часть поверхностного аппарата. Ее толщина составляет около 10 нм. Плазмалемма ограничивает цитоплазму и защищает ее от внешних воздействий, принимает участие в процессах обмена веществ между клеткой и внеклеточной средой.

Основными компонентами мембраны являются липиды и белки. Липиды составляют около 40 % массы мембран. Среди них преобладают фосфолипиды.

Молекулы фосфолипидов располагаются в виде двойного слоя (липидный бислой). Как вы уже знаете, каждая молекула фосфолипида образована полярной гидрофильной головкой и неполярными гидрофобными хвостами. В цитоплазматической мембране гидрофильные головки обращены к наружной и внутренней сторонам мембраны, а гидрофобные хвосты — внутрь мембраны (рис. 30).

Кроме липидов, в состав мембран входят белки двух типов: интегральные и периферические. Интегральные белки более или менее глубоко погружены в мембрану либо пронизывают ее насквозь. Периферические белки располагаются на внешней и внутренней поверхностях мембраны, причем многие из них обеспечивают взаимодействие плазмалеммы с надмембранными и внутриклеточными структурами. 

На внешней поверхности цитоплазматической мембраны могут располагаться молекулы олиго- и полисахаридов. Они ковалентно связываются с мембранными липидами и белками, образуя гликолипиды и гликопротеины. В клетках животных такой углеводный слой покрывает всю поверхность плазмалеммы, образуя надмембранный комплекс. Он называется гликокаликсом (от лат. гликис — сладкий, калюм — толстая кожа).

Функции цитоплазматической мембраны. Плазмалемма выполняет ряд функций, важнейшими из которых являются барьерная, рецепторная и транспортная.

Барьерная функция. Цитоплазматическая мембрана окружает клетку со всех сторон, играя роль барьера — преграды между сложно организованным внутриклеточным содержимым и внеклеточной средой. Барьерную функцию обеспечивает, прежде всего, липидный бислой, не позволяющий содержимому клетки растекаться и препятствующий проникновению в клетку чужеродных веществ.

Рецепторная функция. В цитоплазматическую мембрану встроены белки, способные в ответ на действие различных факторов внешней среды изменять свою пространственную структуру и таким образом передавать сигналы внутрь клетки. Следовательно, цитоплазматическая мембрана обеспечивает раздражимость клеток (способность воспринимать раздражители и определенным образом реагировать на них), осуществляя обмен информацией между клеткой и окружающей средой.

Некоторые рецепторные белки цитоплазматической мембраны способны распознавать определенные вещества и специфически связываться с ними. Такие белки могут участвовать в отборе необходимых молекул, поступающих в клетки.

К рецепторным белкам относятся, например, антигенраспознающие рецепторы лимфоцитов, рецепторы гормонов и нейромедиаторов и т. д. В осуществлении рецепторной функции, кроме мембранных белков, важную роль играют элементы гликокаликса.

Разнообразие и специфичность наборов рецепторов на поверхности клеток приводит к созданию сложной системы маркеров, позволяющих отличать s.свои:/ клетки (той же особи или того же вида) от s.чужих:/. Благодаря этому клетки могут вступать друг с другом во взаимодействия (например, конъюгация у бактерий, образование тканей у животных).

В цитоплазматической мембране могут быть локализованы специфические рецепторы, реагирующие на различные физические факторы. Например, в плазмалемме светочувствительных клеток животных расположена специальная фоторецепторная система, ключевую роль в функционировании которой играет зрительный пигмент родопсин. С помощью фоторецепторов световой сигнал превращается в химический, что, в свою очередь, приводит к возникновению нервного импульса.

Транспортная функция. Одной из основных функций плазмалеммы является обеспечение транспорта веществ как в клетку, так и из нее во внеклеточную среду. Выделяют несколько основных способов транспорта веществ через цитоплазматическую мембрану: простая диффузия, облегченная диффузия, активный транспорт и транспорт в мембранной упаковке (рис. 31).

При простой диффузии наблюдается самопроизвольное перемещение веществ через мембрану из области, где концентрация этих веществ выше, в область, где их концентрация ниже. Путем простой диффузии через плазмалем-му могут проходить небольшие молекулы (например, Н20, 02, С02, мочевина) и ионы. Как правило, неполярные вещества транспортируются непосредственно через липидный бислой, а полярные молекулы и ионы — через каналы, образованные специальными мембранными белками. Простая диффузия происходит относительно медленно. Для ускорения диффузного транспорта существуют мембранные белки-переносчики. Они избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану. Такой тип транспорта называется облегченной диффузией. Скорость переноса веществ при облегченной диффузии во много раз выше, чем при простой.

Диффузия (простая и облегченная) — разновидности пассивного транспорта. Он характеризуется тем, что вещества транспортируются через мембрану без затрат энергии и только в том направлении, где наблюдается меньшая концентрация данных веществ.

 Активный транспорт — перенос веществ через мембрану из области низкой концентрации этих веществ в область более высокой. Для этого в мембране имеются специальные насосы, работающие с использованием энергии (см. рис. 31). Чаще всего для работы мембранных насосов используется энергия АТФ.

Одним из наиболее распространенных мембранных насосов является натрий-калиевая АТ Фаза (Na+/K+ - АТ Фаза). Она удаляет из клетки ионы Na+ и закачивает в нее ионы К+- Для работы Ыа++-АТФаза использует энергию, выделяемую при гидролизе АТФ. Благодаря этому насосу поддерживается разность концентраций Na+ и К+ в клетке и внеклеточной среде, что лежит в основе многих биоэлектрических и транспортных процессов.

В результате активного транспорта с помощью мембранных насосов происходит также регуляция содержания Mgr+, Са2+ и других ионов в клетке.

Путем активного транспорта через цитоплазматическую мембрану могут перемещаться не только ионы, но и моносахариды, аминокислоты, другие низкомолекулярные вещества.

 Своеобразной и относительно хорошо изученной разновидностью мембранного транспорта является транспорт в мембранной упаковке. В зависимости от того, в каком направлении переносятся вещества (в клетку или из нее), различают два вида этого транспорта — эндоцитоз и экзоцитоз.

Эндоцитоз (отгреч. эндон — внутри, китос — клетка, ячейка) — поглощение клеткой внешних частиц путем образования мембранных пузырьков. При эндоцитозе определенный участок плазмалеммы обволакивает внеклеточный материал и захватывает его, заключая в мембранную упаковку (рис. 32).

Выделяют такие разновидности эндоцитоза, как фагоцитоз (захват и поглощение твердых частиц) и пиноцитоз (поглощение жидкости).

Путем эндоцитоза осуществляется питание гетеротрофных протистов, защитные реакции организма (поглощение лейкоцитами чужеродных частиц) и др.

Экзоцитоз (от греч. экзо — снаружи) — транспортировка веществ, заключенных в мембранную упаковку, из клетки во внешнюю среду. Например, пузырек комплекса Гольджи перемещается к цитоплазматической мембране и сливается с ней, а содержимое пузырька выделяется во внеклеточную среду. Таким способом клетки выделяют пищеварительные ферменты, гормоны и другие вещества.

Основные биологические механизмы транспорта веществ в клетку. Биологические основы транспорта малых молекул. Унипорт и копорт (антипорт и симпорт). Транспорт в мембранной упаковке, его биологические механизмы.

к основ мехнз транспорта в-в в клетку и из неё относят: 1)пассивный транспорт 2)активный транспорт 3) транспорт в мембранной упаковке, т.е. за счёт образования окруженных мембраной пузырьков.

Использование того или иного механизма транспорта зависит от химич природы переносимого вещества, его концентрации по обе стороны клеточной мембраны, в так же от размеров транспортируемых частиц.

Пассивным транспортом наз – перенос веществ через мембрану по градиенты из концентрации без затрат энергии. Такой транспорт осуществляется посредством 2х основных механизмов: простой диффузии и облегченной диффузии.

Путём простой диффузии транспортируются малые полярные (СО2, Н2О и др) и неполярные (О2, N2 и др.) молекулы, для которых плазматическая мембрана проницаема.

Облегчённая диффузия – это транспорт гидрофильных молекул и ионов, не способных самостоятельно проходить через плазмолемму, с помощью специфических транспортных белков. В отличии от простой диффузии облегченная отличается высокой избирательностью по отношению к транспортируемым веществам.

свойства ионных каналов: 1)высокая скорость транспорта; 2)высокая избирательность транспорта 3) большинство ионных каналов открыты лишь временно.

Сигналом для активации ререносчика и изменения его конформации могут служить: 1) переносимые молекулы 2)специфические не транспортируемые молекулы, для которых в белке переносчика имеются соответсвующие центры свызывания. 3) электрические сигналы.

Активным транспортом – наз перенос веществ через мембрану против их градиентов концентрации. Он всегда осуществляется с помощью белков-переносчиков, которые наз насосами или помпами и требуют затрат энергии, основным источником которой служит аденозинтрифосфорная кислота (атф).

Пассив и актив транспрт подраздел на унипорт и копорт или споряженный транспорт.

Унипорт – это транспорт, при котором белок-переносчик функционирует только в отношении молекул или ионов одного вида. При копорте белок-переносчик способен транспортировать одновременно 2 или более видов молекул или ионов. Такие белки переносчики получила название копортеров, или сопряженных переносчиков.

Различ 2 вида копорта: симпорт и антирорт. В случае симпорта различные молекулы или ионы транспортируются в одном направлении, а при антироте – в противоположных.

По направлению транспорта в клетке выделяют 2варианта цитоза: 1) эндоцитоз (транспорт в клетку); 2) экзоцитоз (транспорт из клетки); 3)трансцитоз (транспорт через клетку).

Транспорт в мембранной упаковке (цитоз)

Характеризуется тем, что на определенных стадиях транспортируемые вещества

находятся внутри мембранных пузырьков, т.е. имеют мембранную упаковку. По

направлению транспорта в отношении клетки выделяют 3 вида цитоза:

1. эндоцитоз

2. экзоцитоз

3. диацитоз (трансцитоз)

Эндоцитоз может осуществляться различными механизмами, в связи с чем

выделяют 3 его варианта: фагоцитоз, макропиноцитоз и макропиноцитоз.

Фагоцитозу подвергаются крупные молекулы и частицы более 1 мкм. В

результате фагоцитоза образуется мембранный пузырек с транспортируемой

частицей, которая называется фагосома. Ее образование является сложным

процессом, требующим затрат энергии в виде АТФ. На основе фагоцитоза

осуществляется защитная функция организма, так как специализированные

клетки – фагоциты уничтожают различные бактериальные, вирусные и прочие

чужеродные клетки, а также поврежденные или состарившиеся клетки

собственного организма (например, 1 макрофаг за сутки уничтожает до 1011

старых эритроцитов).

Макропиноцитозу подвергаются клетки, размер которых составляет десятые

доли микрометра. Как и фагоцитоз, макропиноцитоз является АТФ-зависимым

процессом и более высокоспецифичен.

С помощью макропиноцитоза в клетку постоянно поступают олиго- и

полимеры, активно используемые клеткой в регуляторных и строительных

целях.

Микропиноцитоз представляет собой вариант эндоцитоза, предназначенного

для молекул относительно небольшого размера (сотые доли мкм). Как правило,

ему подвергаются белковые молекулы. Процесс является АТФ-независимым и

встречается лишь как начальный этап диацитоза.

Экзоцитоз – это вид транспорта в мембранной упаковке, при котором вещества

выводятся из клетки во внеклеточное пространство.

В типичном варианте мембранные пузырьки, подлежащие выводу из клетки,

формируются в цитоплазме. Их образование связано с функционированием

аппарата Гольджи и эндоплазматической сети. Экзоцитарные пузырьки

направляются к плазмалемме, в результате мембрана пузырька становится

компонентом плазмалеммы, а содержимое – частью гликокаликса или компонентом

внеклеточной среды со своими специфическими функциями.

Трансцитоз – это специализированный транспорт в мембранной упаковке,

характерный для некоторых эпителиальных клеток. При трансцитозе идет

перенос отдельных молекул через клетку. Биологический смысл данного

процесса заключается в возможности транспорта специфических молекул через

эпителиальный барьеры. С помощью диацитоза синтезированные антитела

переносятся через эндотелий капилляров и эпителий слизистых оболочек, где

они образуют один из элементов барьерного иммунитета против вирусов,

простейших, паразитических червей и бактерий.

7. Классификация органоидов цитоплазмы. Комплекс Гольджи, строение, функции. Механизм сортировки белков на примере лизосомальных ферментов.

Органеллы (органоиды) – постоянные структуры цитоплазмы, выполняющие в ней определенные функции.

Классификация органелл учитывает особенности их строения и физиологических отправлений.

На основе учета характера выполняемых функций все органоиды подразделяются на две большие группы:

1. Органеллы общего назначения, выражены во всех клетках организма, обеспечивают наиболее общие функции, поддерживающие их структуру и жизненные процессы (митохондрии, центросома, рибосомы, лизосомы, пероксисомы, микротрубочки, цитоплазматическая сеть, комплекс Гольджи)

2. Специальные – встречаются лишь в клетках, которые выполняют специфические функции (миофибриллы, тонофибриллы, нейрофибриллы, синаптические пузырьки, тигроидное вещество, микроворсинки, реснички, жгутики).

По структурному признаку различаем органоиды мембранного и немембранного строения.

Органеллы мембранного строения в своей основе имеют выраженными одну или две биологические мембраны (митохондрии, пластинчатый комплекс, лизосомы, пероксисомы, эндоплазмамическая сеть).

Органеллы немембранного строения формируются микротрубочками, глобулами из комплекса молекул и их пучками (центросома, микротрубочки, микрофиламенты и рибосомы).

По величине выделяем группу органелл, видимых в световой микроскоп (аппарат Гольджи, митохондрии, клеточный центр), и ультрамикроскопических органелл, видимых только в электронный микроскоп (лизосомы, пероксисомы, рибосомы, эндоплазматическая сеть, микротрубочки и микрофиламенты).

Комплекс Гольджи (пластинчатый комплекс) при световой микроскопии виден в виде коротких и длинных нитей (до 15 мкм длиной). При электронной микроскопии каждая такая нить (диктиосома) представляет комплекс плоских цистерн, наслоенных друг на друга, трубочек и пузырьков. Пластинчатый комплекс обеспечивает накопление и выведение секретов, синтезирует некоторые липиды и углеводы, формирует первичные лизосомы.

Митохондрии при световой микроскопии обнаруживаются в цитоплазме клеток в виде мелких зерен и коротких нитей (длиной до 10 мкм), от наименований которых образовано само название органоида. При электронной микроскопии каждая из них представляется в форме телец округлой или продолговатой формы, состоящих из двух мембран и матрикса. Внутренняя мембрана имеет гребневидные выпячивания – кристы. В матриксе выявляются митохондриальные ДНК и рибосомы, синтезирующие некоторые структурные белки. Ферменты, локализованные на мембранах митохондрий, обеспечивают процессы окисления органических веществ (клеточное дыхание) и запасание АТФ (энергетическая функция).

Лизосомы представлены мелкими пузырьковидными образованиями, стенка которых сформирована биологической мембраной, внутри которой заключен широкий набор гидролитических ферментов (около 70).

Выполняют роль пищеварительной системы клеток, нейтрализуют вредные агенты и чужеродные частицы, осуществляют утилизацию собственных устаревших и поврежденных структур.

Различают первичные лизосомы, вторичные (фаголизосомы, аутофаголизосомы) и третичные телолизосомы (остаточные тельца).

Эндоплазматическая сеть – это система мельчайших цистерн и канальцев, анастомозирующих между собой и пронизывающих цитоплазму. Их стенки образованы одиночными мембранами, на которых упорядоченно располагаются ферменты для синтеза липидов и углеводов – гладкая эндоплазматическая сеть (агранулярная) или фиксируются рибосомы – шероховатая (гранулярная) сеть. Последняя предназначена для ускоренного синтеза белковых молекул на общие нужды организма (на экспорт). Обе разновидности ЭПС обеспечивают также циркуляцию и транспорт различных веществ.

Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты ( «отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

Аппарат Гольджи

Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.

Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Лизосомы

Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.

Различают: 1) первичные лизосомы, 2) вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Механизм сортировки белков на примере лизосомальных ферментов???

8.Эндоплазматический ретикулум (ЭПР) (лат. reticulum — сеточка) или эндоплазматическая сеть (ЭПС) — внутриклеточный органоид эукариотической клетки, представляющий собой разветвленную систему соединённых между собой каналов и полостей, ограниченных одинарной мембраной, поверхность которой составляет более 50% площади всех клеточных мембран. Мембрана ЭПС тоньше чем плазмалемма и содержит более высокую концентрации. белка. Непосредственным продолжение ЭПС является наружная ядерная мембрана.

На поверхности мембран ЭПС происходит большая часть реакций метаболизма, протекающих в клетке. ЭПС разделяет цитоплазму на отдельные отсеки. по каналам ЭПС происходит упорядоченный обмен веществами и энергией между различными компонентами клетки.

ЭПС – генератор мембран для плазмолеммы, ап гольджи и лизосом.

Гранулярная или шероховатая эпс.

наружная обращеная к цитоплазме, сторона грЭПС покрыта рибосомами (котор имеют вид мелк гранул; поступают из ядра благодаря связи мембраны с наруж мембр ядра).

грЭПС – образ уплощенными мембранными цистернами и трубочками на наружной поверхности которых располог рибосомы и полисомы, придающие мембране зернист вид.

Мембраны содерж белки (которые обеспеч связывание рибосом, уплощение цистерн).

Полость грЭПС сообщ с перенуклеарн пространство. Благодаря грЭПС происход отделение вновь синтезированных белковых молекул от гиалоплазмы.

грЭПС хорошо развита в клетках, специализирующихся на белковом синтезе.

ФУНКЦИИ: 1)биосинтез всех мембранных белков, предназначенных для экспорта из клетки.

2) в грЭПС происход посттрансляционный процессинг белков. (созревание белка). белки приобрет характер для них третичную или четвертичную структуру. потом транспортир в комплекс гольджи - > потом в другие органойды.

3) гЭПС выполняет ф-ю пространственного разделения ферментных систем. резделени клетки с помощью мембран на отдел отсеки – компарменты.

4) обеспеч транспорт синтезируемых веществ в аппарат гольджи.

Гладкая или агранулярная ЭПС.

не имеет рибосом. Сост из сильно ветвящихся канальцев и мелких вакуолей диаметром 20-100 нм. гЭПС - трёхмерная замкнутая сеть мембранных анастамозирующих турбочек, канальцев, цистерн и пузырьков диаметром 20-100 нм, на поверхности которых рибосомы отсутсвт.

На цитоплазмотической поверхности гЭПС синтезируется большая часть липидов клетки, которые вход в состав всех её мембран. Часть синтезир на гЭПС белков и липидов встраивается в неё, но увеличения общей площади мембраны при этом не происход. на гЭПС соверш синтез и распад многих углеводов, включ полисахариды, образ стеройдные гормоны.

В Гэпс накаплив многие ядовит в-ва, подлежащ удален из клетки.

гЭПС наиболее развита в клетках с интенсивным жировыми углеводным обменом.

ФУНКЦИИ: 1) синтез липидов; (на мембранах) 2) синтез гликогена (в клетках печени)

3) синтез холестерина и других стеройдов 4) детоксикация эндогенных и экзогенных в-в. (в клетках печени) 5) накопление ионов Са. гЭПС в Миш клетках играет роль депо ионов кальция, необходимых для мыш сокращ. 6) компартментализация (эпс раздел клетку на отдел отсеки) 7) транспорт синтезируемых веществ 8) в мегакариоцитах элементы гЭПС образуют демаркационные каналы, разделяющие формирующие тромбоциты. 9) восстановление кариолеммы в телофазе митоза.

РИБОСОМЫ

Рибосома — важнейший органоид живой клетки сферической или слегка овальной формы, диаметром 100-200. В эукариотических клетках рибосомы располагаются на мембранах эндоплазматического ретикулума, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Синтез рибосом у эукариот происходит в специальной внутриядерной структуре - ядрышке. Рибосомы представляют собой нуклеопротеид. Рибосомная РНК составляет около 70 % всей РНК клетки.

Рибосома- место синтеза белка. Каждая рибосома сост из 2х частей (субъединиц) – большой и малой. Построены они из равных частей (по массе) белка ирнк. РНК входящ в сост рибосом наз рибосомальной. рРНК синтез в ядрышке.

Основным методом выделения рибосом является осаждение центрифугированием. Этот метод позволяет выделить два основных типа рибосом, которые называются 70S-рибосомами и 8OS-рибосомами. (S — сведбсрг — единица, характеризующая скорость осаждения в центрифуге; чем больше число S. тем выше скорость осаждения). 70S - рибосомы обнаруживаются у прокариот и в хлоропластах и митохондриях эукариот. 8OS-рибосомы, несколько более крупные, находятся в цитоплазме эукариот. В процессе синтеза белка рибосомы дви­жутся вдоль мРНК. Процесс идет более эффективно, если вдоль мРНК движется не одна, а несколько рибосом. Такие цепи рибосом на мРНК называют полирибосомами, или полисомами.