Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-90 экзамен по биологии 2020.docx
Скачиваний:
257
Добавлен:
31.07.2020
Размер:
3.61 Mб
Скачать

Общая характеристика какркасно-двигательной системы клетки. Биологическая роль цитоскелета

Цитоскелет (опорно-двигательная система, иди каркасно-двигательная система клетки). Опорно-двигательная система клетки образована тремя основными компонентами: микротрубочками, микрофиламентами и промежуточными филаментами.

Функции: 1) обеспечивает поддержание формы клеток, осуществляет изменение объема и формы клетки, передвижение ее в пространстве, 2) образует опорный каркас для всех клеточных структур, обеспечивает фиксацию составных частей клетки в определенном положении и перемещение их относительно друг друга; 3) участвует в образовании других органоидов (ресничек, жгутиков, центриолей и др.) и межклеточных контактов; 4) через цитоскелет происходит взаимодействие с белками внеклеточного матрикса (фибронектином, ламинином).

Микрофиламенты и промежуточные филаменты

Микрофиломенты (от греч. micros - малый и лат. filamentum — нить) - органоиды, со­стоящие из двух спирально закрученных цепочек, образованных короткими молекулами белка актина, на долю которого приходится более 10% всех белков клетки.

Тонкие микрофиламенты (МФ) - очень тонкие белковые нити диаметром 4-7 нм, состоящие из белка актина. В клетке актин присутствует в двух состояниях: в виде отдельных глобулярных (шаровидных) субъединиц или в виде филаментов (нитей), образованных в результате полимеризации глобулярного актина. В состав МФ могут входить также тропонин, тропомиозин и другие белки. МФ полярны - они имеют плюс-конец, который растет за счет полимеризации актина и минус-конец, где происходит деполимеризация.

Функции микрофиламентов:

1) образуют пучки, служащие опорой для различных внутриклеточных структур;

2) образуют сократительные системы, обеспечивая клеточную подвижность. Формируют временные органоиды перемещения (псевдоподии, ламеллоподии). Лежат в основе мышечного сокращения (нити миозина скользят относительно нитей актина). Участвуют в обеспечении всех форм движения. Влияют на действие

белков-переносчиков эндосом.

3) МФ образуют кортикальную сеть, которая близко подходит к плазмалемме и при помощи

белка винкулина (с участием а-актинина и спектрина) присоединяется к белку интегрину

цитоплазматической мембраны; 4) МФ образуют нити натяжения, расположенные по радиусам

клетки. Нити представляют собой спирально скрученные волокна.

5) актиновые МФ принимают участие в образовании микроворсинок (рис.8). Микроворсинки

находятся на апикальных поверхностях эпителиоцитов тонкой кишки.

Промежуточные филоменты (скелетные фибриллы) - органоиды цитоплазмы клеток высших эукариот. Они образованы жесткими и прочными и устойчивыми в химическом отношении белковыми волокнами (нитевидными белками), перевитыми попарно или по трое между собой и объединенными боковыми сшивками в длинный тяж, похожий на канат. По своему диаметру (8-10 нм) промежуточные филаменты (ПФ) занимают промежуточное положение между микрофиламентами и микротрубочками. ПФ, по сравнению с микротрубочками и микрофила-ментами, отличаются большой стабильностью и устойчивостью к повреждающим факторам. Расположены дальше всех остальных элементов цигоскелета от плазмалеммы.

Функции ПФ изучены недостаточно; установлено, однако, что они не влияют ни на движение, ни на деление клетки. Выполняют главным образом структурные функции, например, противодействуют растягивающим силам. К их основным функциям относятся: • структурная ;• обеспечение равномерного распределения сил деформации; участие в образовании рогового вещества; • формообразующая – поддержание формы отростков нервных клеток; • удержание миофибрилл в мышечной ткани.

15. Биологическая роль цитоскелета. Микротрубочки, их строение и функции. Микротубулярные моторные белки кинезины и динеины, их функции. Клеточный центр, его строение.

Цитоскелет (опорно-двигательная система, иди каркасно-двигательная система клетки). Опорно-двигательная система клетки образована тремя основными компонентами: микротрубочками, микрофиламентами и промежуточными филаментами.

Функции: 1) обеспечивает поддержание формы клеток, осуществляет изменение объема и формы клетки, передвижение ее в пространстве, 2) образует опорный каркас для всех клеточных структур, обеспечивает фиксацию составных частей клетки в определенном положении и перемещение их относительно друг друга; 3) участвует в образовании других органоидов (ресничек, жгутиков, центриолей и др.) и межклеточных контактов; 4) через цитоскелет происходит взаимодействие с белками внеклеточного матрикса (фибронектином, ламинином).

Микротрубочки (от греч. micros - малый) - это полые белковые цилиндры с диаметром 25-28 нм и толщиной стенки 5 нм. Длина микротрубочек (МТ) до 1000 мкм. Их стенка образована нитями белка тубулина. МТ построены из глобулярного белка тубулина, представляющего собой димер из а- и р-субъединиц (53 и 55 кДа). а- и р гетеродимеры образуют линейные цепочки, называемые протофиламентами. 13 протофиламентов образуют циклический комплекс. Затем кольца полимеризуются в длинную трубку. Каждый протофиламент образует спираль по отношению к центральной оси МТ. Трубчатая конструкция обеспечивает необходимую прочность МТ при минимальной затрате массы Сами МТ не способны к сокращению.

Они перемещаются за счет МАР-белков (белков, ассоциированных с микротрубочками). С МТ ассоциируют два вида белков: структурные белки и белки-транслокаторы. Эти белки обеспечивают эффективное функционирование микротрубочек. МТ представляют собой динамические полярные структуры с (+) и (-)-концами (с «плюс»- и «минус»-концами). (-)-конец стабилизирован за счет связи с центросомой (центр организации микротрубочек - ЦОМТ)), в то время как для (+)-конца характерна динамическая нестабильность. Он может либо медленно расти, либо быстро укорачиваться. МТ могут удлиняться за счет присоединения тубулина к их концам (преимущественно к одному плюс-концу). Тубулиновые мономеры связывают ГТФ (гуанозинтрифосфат), который медленно гидролизуется в ГДФ (гуанозиндифосфат). Таким образом, растут МТ с (+>конца путём добавления тубулиновых субъединиц. Большинство МТ в животной клетке растет от центриоли, к которой прикреплены их «минуоьконцы. Расходясь от нее по всем направлениям МТ образуют полярный цитоскелет клетки. МТ занимают наиболее отдаленное от плазмалеммы положение.

Образование микротрубочек начинается от ЦОМТ (центриоли, базальные тельца ресничек и жгутиков, центромеры хромосом).

Функции микротрубочек: 1) входят в состав центриолей, базалъных телец, ресничек и жгутиков: Клеточный центр образован 2-мя перпендикулярно лежащими центриолями Между собой МТ соединены при помощи белка нексина. Реснички и жгутики. В основании ресничек и жгутиков находится базальное тельце (ЦОМТ).

2) составляют нити веретена деления клеток;

3) осуществляют внутриклеточный транспорт, например транспорт мембранных пузырь­ков от ЭПС к аппарату Гольджи (с помощью белка кинезина)

4) образуют цитоскелет, они нередко располагаются в зоне, непосредственно примыкающей к мембране, и поддерживают форму клетки. В нервных клетках МТ образуют каркас их аксонов, которые у крупных животных могут достигать длины нескольких метров. МТ участвуют в формировании субмембранных структур клеток животных и в образовании клеточной оболочки растительной клетки.

Выделяют два вида моторных белков:

  • цитоплазматические динеины;

  • кинезины.

Динеины перемещают груз только от плюс-конца к минус-концу микротрубочки, то есть из периферийных областей клетки к центросоме. Кинезины, напротив, перемещаются к плюс-концу, то есть к клеточной периферии.

ЦЕНТРИОЛИ

её стенка образованна 27 микротрубочками, сгруппированными в 9 триплетов.

Центриоль - Центриоли (обычно их две) лежат вблизи ядра. Каждая центриоль построена из цилиндрических элементов (микротрубочек), образованных в результате полимеризации белка тубулина. Девять триплетов микротрубочек расположены по окружности.

Функции: Центриоли принимают участие в формировании цитоплазматических микротрубочек во время деления клетки и в регуляции образования митотического веретена. В клетках растений центриолей нет, и митотическое веретено образуется там иным способом. Кроме того, ученые полагают, что ферменты клеточного центра принимают участие в процессе перемещения дочерних хромосом к разным полюсам в анафазе митоза.

2) образование нитей митотического веретена. Центриоли поляризуют процесс деления клетки, обеспечивая расхождение сестринских хроматид (хромасом) в анафазе митоза.

Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет). Центриоль представляет собой цилиндр, боковая поверхность которого образована девятью наборами микротрубочек. Количество микротрубочек в наборе может колебаться для разных организмов от 1 до 3.

Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки.

Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путем синтеза новой структуры, перпендикулярной существующей.

16. . ДНК. Строение дезоксирибонуклеотида. Первичная, вторичная и третичная структура ДНК. Функции ДНК.

С химической точки зрения ДНК — длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы.

1.Метаболизм, способы образования АТФ в организме. Метаболизм – это совокупность окислительных реакций и химических процессов, которые протекают в живых организмах. В ходе метаболизма образуется энергия, которая необходима любому живому существу. У детей: + баланс, протекает более интенсивно, характерно несовершенство систем. Метаболизм представлен катаболизмом и анаболизмом. Катаболизм – расщепление химических компонентов с выделением энергии – экзергонические реакции. Анаболизм – реакции синтеза с затратой энергии – эндергонические реакции. Этапы катаболизма: 1) специфическое превращение в мономеры – аминокислоты, моносахариды, глицерин, жирные кислоты. 2) образование унифицированных продуктов – ПВК и АцКоА (моносахариды через ПВК). 3) АцКоА в ЦТК образуется СО2, вода; 3НАДН, которые в дых цепи дают воду и 3 АТФ; ФАД Н2, который в дых цепи дает воду и 2 АТФ.

Образование АТФ в процессе метаболизма идет двумя путями – окислительного и субстратного фосфорилирования. (дых цепь ЦТК гликолиз). Возникновение макроэргической связи в момент окисления субстрата с дальнейшей активацией неорганического фосфата и его переносом на АДФ с образованием АТФ называют субстратным фосфорилированием (10% всей энергии). Реакцией субстратного фосфорилирования являются две реакции гликолиза – окисление 3-фосфоглицеринового альдегида в 1,3-дифосфоглицериновую кислоту, и окисление 2-фосфоглицериновой кислоты в 2-фосфоэнолпировиноградную кислоту; а также одна реакция ЦТК - окисление сукцинил-КоА в янтарную кислоту. Основная масса АТФ образуется путем окислительного фосфорилирования. В процессе окислительного фосфорилирования окисляемый субстрат участия не принимает, а активирование неорганического фосфата сопряжено с переносом электронов и протонов водорода с коферментов дегидрогеназ (принимающих участие в окислении субстрата) к молекулярному кислороду. Сопряжение окисления с фосфорилированием АДФ и последующим образованием АТФ называют окислительным фосфорилированием. Процессы сопряжения окисления и фосфорилирования идут в дыхательной цепи.

2.Свойства белков, их биологическая роль. Методы очистки и разделения. Свойства белков: 1) кислото-основные и электролитические свойства. Белки – это амфотерные соединения. R-COOH+OH-R-COO-+H2O R-NH2+H+R-CH3+. Величина и знак заряда определяется соотношением а/к и рН раствора. То значение рН, при котором суммарный заряд белка равен 0 называется изоэлектрической точкой. В этом состоянии белок характеризуется: минимальной устойчивостью и вязкостью в растворе, отсутствует подвижность в электрическом поле, максимальная способность к осаждению. При сдвиге рН белок приобретает заряд, растворимость и подвижность в электрическом поле. Изоэлектрическая точка используется для разделения белков. 2) кислото-основные свойства используют для их разделения – электрофорез белков плазмы крови. Буферные свойства кислот – связаны с амфотерностью – кислые компоненты нейтрализуются основными, и наоборот. Т.О. поддерживается стабильное значение рН. 3) коллоидно-осмотические свойства. Белки – гидрофильные коллоиды, это придают полярные а/к-ты. При растворении белков в воде образуется гидратная оболочка. Гидрофильные коллоиды связывают большое количество воды и набухают. Образуются жидкости и золи, гели – форма и упругость тканей. Коллоидные свойства белков: а) способность к светорассеиванию – образуется конус Тиндаля б) высокая вязкость в) малая скорость диффузии г) диализ – белки не проходят через полупроницаемую мембрану, легко проходит вода и низкомолекулярные соединения, а белки задерживаются – т.к. действует почечный фильтр. Факторы устойчивости белков: заряд и гидратная оболочка. При их потере белок осаждается. Высаливание – обратимое осаждение белков – разрушение гидратной оболочки. В зависимости от гидрофильности белков они осаждаются при разных концентрациях солей – фракционное высаливание – глобулины при 50% насыщение (NH4)2SO4, альбумины при 100% насыщении. Функции белков: 1) структурная 2) каталитическая – ферменты 3) регуляторная – гормоны 4) двигательная – работа мышц, движение цитоплазмы 5) транспорт – белки плазмы крови – гемоглобин и миоглобин 6) защитная – иммуноглобулины, система комплиментов, система свертывания крови 7) опорная – сухожилия, сочленения 8) регуляторная – узнавание клеток – гликопротеины, содержат углеводный компонент 9) энергетическая.

Использование гидролиза для определения химических свойств белка, ренгеноструктурный анализ, электронная микроскопия.

3.Денатурация белка. Изменение конфигурации белковых молекул. Денатурация – нарушение нативной пространственной структуры белка, приводящее к потере или уменьшению растворимости, утрата специфической биологической активности, изменению ряда физико-химических свойств. Денатурация не сопровождается разрывом пептидных связей, т.е. не разрушается первичная структура, а связи оказываются снаружи и все изменяется. Свойства денатурированного белка: 1) повышается число реактивных групп, т.к. появляются ранее скрытные группы 2) понижается растворимость, белок может выпасть в осадок (при потере факторов устойчивости: заряд и гидратная оболочка) 3) изменяется конфигурация 4) изменяется биологическая активность 5) легко расщепляется протеолитическими ферментами. Факторы приводящие к денатурации белка: 1) физические – температура, УФ облучение, ультразвук, гаммаоблучение, стерилизация 2) химические реагенты: концентрированные кислоты, щелочи, соли тяжелых металлов.

4. Амфотерные свойства белков, изоэлектрическая точка. Белки – это амфотерные соединения. R-COOH+OH-R-COO-+H2O R-NH2+H+R-CH3+. Величина и знак заряда определяется соотношением а/к и рН раствора. То значение рН, при котором суммарный заряд белка равен 0, т.е. + равен -, называется изоэлектрической точкой (РI). Белки в изоэлектрическом состоянии характеризуется: минимальной устойчивостью и вязкостью в растворе, отсутствует подвижность в электрическом поле, максимальная способность к осаждению. При сдвиге рН белок приобретает заряд, растворимость и подвижность в электрическом поле. При сдвиге рН белок становится или катионом и движется к катоду, или анионом и движется к аноду.

5. Молекулярная масса белков, форма и размеры белковой молекулы. Методы их определения. Белки относятся к высокомолекулярным соединениям, в состав которых входят множество а/к-ных остатков, объединенных в макромолекулярную структуру. Молекулярная масса белков колеблется от 6000 до 1000000 Да и выше. Поскольку а/к-ный состав и последовательность а/к выяснены для многих белков, стало возможным вычисление химическим путем их молекулярной массы с высокой точностью. Основными методами определения молекулярной массы являются физико-химические методы .Из них практически наиболее часто используются методы седиментационного анализа, гель-хроматографии и электрофореза. Метод седиментационного анализа проводят в ультрацентрифугах, вычисляют молекулярную массу по скорости седиментации молекул белка или седиментационному равновесию. Метод гель-хроматографии, кроме простоты и быстроты, имеет еще то преимущество, что не требует выделения белка в чистом виде, т.к. примеси других белков не мешают определению молекулярной массы. При применении метода диск-электрофореза в полиакриламидном геле для определения молекулярной массы белков также строят график зависимости между логарифмом молекулярной массы калибровочных белков и подвижностью белковых частиц в полиакриламидном геле, а затем, определив подвижность исследуемого белка, по графику находят его массу. О величине и форме белковых молекул раньше судили по данным ультрацентрифугирования, двойного лучепреломления и диффузии.

6. Гидролиз белков. Гидролиз – расщепление пептидной связи при участии молекулы воды. Пептидная связь + ОН-Н  NH+ COOH. Гидролиз идет постепенно и ступенчато: белок  полипептид  олигопептид  дипептиды  а/к. Гидролиз можно остановить на любой стадии, изменив одно из условий. Химический гидролиз бывает Н+ - кислотный, ОН- - щелочной. Условия химического гидролиза: 1) использование концентрированной кислоты и щелочи 25-30% (5-12 нормальностей) 2) высокая температура 100-1100С 3) 10-12 часов – 96 часов 4) объем кислоты и щелочи превышает в 5 раз объем гидролизуемого белка. Недостатки химического гидролиза: 1) разрушается ряд а/к – цистеин, триптофан 2) при щелочном гидролизе происходит рацимезация а/к из L в D ряд – не усваивается живыми организмами. Использование гидролизатов: 1) для установления структуры белка 2) в медицине используется аминолизин – кровезаменитель, который получается только кислотным гидролизом 3) питание больных после полостных операций. Ферментативный гидролиз – для этих целей чаще используется трипсин. Условия ферментативного гидролиза: поднятие температуры тела, несколько суток. Недостаток ферментативного гидролиза: 1) очень дорого 2) 36-370С 3) годен только для первичной структуры 4) стерильные 5) заселение вторичной микрофлоры. Качественные методы исследования глубины гидролиза, для этого используют цветные реакции. Биуретовая реакция + при наличии 2х и более пептидных связей – гидролиз пошел не до конца. Положительная Нингидриновая реакция (на свободные а/к) – гидролиз пошел до конца. Количественные методы исследования глубины гидролиза – Формольное титрование.

Наличие аминного азота в цельном белке 1-10% в неполном гидролизате 10-75%, в полном 70-90%, а в среднем 80%. Аминный азот входит в группу NH2 в альфа положение рядом с карбоксильной группой.

7. Аминокислоты являются структурной единицей белков. 20 а/к являются протеиногенными, они определяют разнообразие структуры белков, при строгой специфичность ее у каждого конкретного белка. Замена даже одной а/к может привести к развитию молекулярной болезни (замена глутаминовой кислоты на валин в структуре гемоглобина лежит в основе серповидно-клеточной анемии). Аминокислотный состав белка определяет заряд его молекулы и кислотно-основные свойства. В структуру а/к входит радикальная группа, карбоксильная группа, альфа-углеродный атом и аминогруппа. Если аминогруппа расположена слева от хирального атома углерода, то эту а/к относят к L-ряду. Наиболее стабильной конформацией вторичной структуры белков является а-спираль (ее образует аланин, лейцин, тирозин, гистидин, валин, и не образуют серин, глутамат лизин, глицин). На основании особенностей строения радикальных групп все а/к делятся на три группы: 1)алифатические (нециклические а/к) а) моноаминомонокарбоновые а/к – глицин, аланин, валин, лейцин, изолейцин; оксиаминокислоты, содержащие ОН-группу – серин, треонин; а/к, содержащие амидную группу – аспарагин, глутамин; серусодержащие а/к – цистеин, митионин. в) моноаминдикарбоновые а/к – аспарагиновая и глутаминовая кислоты. с) диаминомонокарбоновые а/к – лизин, аргинин. 2) ароматические а/к, содержащие бензольное кольцо – фенилаланин, тирозин, триптофан. 3) гетероциклические а/к – гистидин, пролин.

На основе принципа полярности радикальных групп, т.е. способности их к взаимодействию с водой, все а/к подразделяют на четыре основных класса: 1) а/к с неполярными, или гидрофобными радикальными группами – аланин, валин, лейцин, фенилаланин, триптофан. 2) а/к с полярными, незаряженными радикальными группами – глицин, серин, треонин, цистеин, тирозин. 3) а/к с отрицательно заряженными радикальными группами – аспарагиновая и глутаминовая кислоты. 4) а/к с положительно заряженными радикальными группами – лизин, аргинин, гистидин.

8. Уровни структуры белка. Первичная структура белка: последовательность а/к в полипептидной цепи соединенные пептидной связью (ковалентная). Последовательность а/к, их количество, лежат в основе первичной структуры белка, в которой заложена информация о последующих уровнях структуры и биологических функциях белка. Вторичная структура белка: 1) а-спираль имеет жесткие параметры – правозакрученная спираль, шаг спирали между двумя витками 3,6 а/к, высота 0,54 нм, конформация повторяется через 5 витков или 18 а/к, многочисленные Н связи между группами NH и С-О от первой к четвертой а/к-те. 2) бета структура – слоисто-складчатая, удерживается водородными связями, пептидные цепи располагаются антипараллельно. 3) неупорядоченная нерегулярная структура – а+в структуры – перекрест где встречаются а/ альфа и бета. Третичная структура белка: упаковка полипептидной цепи в пространстве. 1) в фибриллярных белках – коллаген и эластин – 3 а-спираль, бета слой (актин, миозин) 2) в глобулярных белках – все три типа вторичных структур. Два типа связи в третичной структуре: 1) ковалентная – пептидная и дисульфидная 2) слабые связи – многочисленные водородные связи, ионные взаимодействия. Упаковка идет таким образом, что гидрофобные связи находятся ниже (по типу жирной капли) – легко разрываются при изменении рН, температуры, ионов. Четвертичная структура – это ассоциация 4х субъединиц, которые определенным образом ориентированны в пространстве относительно друг друга. Для того чтобы Нb удерживался в форме тетрамера возникают связи между одинаковыми полипептидными цепочками, а также между разными полипептидными цепочками. Субъединицы расположены в пространстве таким образом, что в центре Нb образуется центральная полость (впадина), в которой находятся 2,3-дифосфоглицириновая кислота. По мере присоединения кислорода к молекуле гемоглобина конформация четвертичной структуры меняется, при этом альфа цепи сближаются, бета расходятся, т.о. молекула Нb как бы дышит Присоединяется одна молекула кислорода к первой субъединице, что приводит к конформационным изменениям других субъединиц.

9. Классификация белков. По форме молекулы: 1) глобулярные – форма шара, хорошо растворимы в воде, имеет гидроксильную группу, окружена гидратной оболочкой (ферменты, гормоны, защитные белки); 2) фибриллярные – волокнистая структура, не растворимы в воде (коллаген, эластин, креатин).

По структуре: I – простые – состоят только из а/к 1) альбумины (поддерживают онкотическое и осмотическое давление, транспорт жирных кислот) и глобулины (транспорт липидов, гормонов, витаминов, защитная функция) 2) протамины (выражены основные свойства, 80% аргинина, хорошо растворимы в воде, PI находится в щелочной среде) и гистоны (много лизина и аргинина, регулируют метаболическую активность генома) 3) проламины и глютелины – белки растительного происхождения – семена злаков, растворяются в водном растворе этанола, содержат 20% глутаминовой кислоты и 15% пролина 4) протеиноиды – белки костей, хрящей, волос, ногтей, не перевариваются под действием ферментов ЖКТ, имеют фибриллярную структуру, не растворяется в водных растворах, не пригодные для питания.

II – сложные – состоят из белковой (а/к) и небелковой части, они связаны ковалентно-гетерополярной или координационной связью 1) нуклеопротеиды – небелковой частью является нуклеиновая кислота, если это ДНК, дезоксирибонуклеиды, если РНК – рибонуклеины 2) фосфопротеиды – казеин, вителлин, вителлинин, фосвитин, овальбумин, ихтулин – осуществляют питание зародыша и новорожденного; фосфорная кислота связана сложной эфирной связью с белковой частью 3) гликопротеины – простерические группы представлены углеводами и их производными, которые прочно связаны с белковой частью, и гликозаминогликанами (гиалуроновая и хондроитинсерная кислоты); различают собственно гликопротеины (95% белка, 5% углеводный компонент – тиреотропный и фолликулостимулирующий гормон) и протеогликаны (5% белка, 95.5 гликозаминогликана) 4) Липопротеины – простерическая группа представлена липидом, входят в состав клеточной мембраны, митохондрий и микросом, а также присутствует в свободном состоянии в плазме крови; делятся на высокой плотности – ЛПВП (холестерин из тканей в печень), низкой – ЛПНП (холестерин в ткани), очень низкой – ЛПОНП и хилоникроны (транспортируют триглицериды). Связь между липидом и белком нековалентная. 5) металлопротеины – в активном центре нах-ся металл – ферритин, трансферрин, гемосидерин. 6) хромопротеины – состоят из белковой части и окрашенного небелкового компонента: а) флавопротеины – в качестве простерической группы – ФМН и ФАД б) ретинальпротеины – витамин А в) гемопротеины – небелковая часть – гем, различают ферментные (цитохромы, каталаза, пероксидаза) и неферментные (гемоглобин и миоглобин).

10. Нуклеопротеиды это сложные белки, которые состоят из белковой и небелковой части. Небелковая часть – простерическая группа, представленная нуклеиновой кислотой. В природе обнаружено два типа нуклеопротеидов, отличающихся друг от друга по составу, размерам, физико-химическим свойствам: дезоксирибонуклеопротеиды ДНП и рибонуклеопротеиды РНП. У РНП углевод представлен рибозой, у ДНП дезоксирибозой. ДНП локализованы преимущественно в ядре, а РНП в цитоплазме. Белковая часть ДНП представлена 5 классами гистонов, различающихся по размерам, а/к составу: Н1 – богатые лизином; Н2А – богатые аргинином и лизином; Н2В – умеренно богатые аргинином и лизином; Н3 – богатые аргинином; Н4 – богатые глицином и аргинином. В различных нуклеопротеидах количество нуклеиновой кислоты колеблется в пределах от 40 до 65%. В вирусных нуклеопротеидах 2-5% (вирус собачей мазайки РНК 2%). Выделение нуклеиновых кислот – фенольный метод – происходит денатурация белка, центрифугирование, водную среду осаждают на холоде, нуклеиновые кислоты выпадают в осадок.