- •2.Задание точки, прямой и плоскости на комплексном чертеже
- •3.Точка, прямая и плоскость в ортогоналных проекциях
- •4.Уметь задать плоскость не менее чем 6 способами
- •5.Взаимное положение прямых. Уметь построить изображение параллельных, пересекающихся и скрещивающихся прямых, конкурирующие точки
- •6.Основные позиционные задачи
- •7.Виды многгранников
- •8.Правильные многранники.Примеры7
- •9. Взаимные пересечения поверхностей вращения.Общий принцип
- •2. Способ вспомогательных секущих плоскостей
- •10.Взаимные пересечения соосных поверхностей вращения
- •11.Метод перемены плоскостей проекции
- •12.Пересечение многогранников плоскостью и прямой
- •13.Построение взаимного пересечения многранников
- •14.Основные метрические задачи
- •15.Образование поверхностей.Определитель
- •16.Определение кривой линии.
- •17.Кривые линии. Плоские и пространственные кривые
- •18.Классификация поверхностей
- •20.Виды разверток. Их применение в технике
- •21.Использование разверток в макетировании
- •22.Развертываемые и неразвертываемые поверхности
- •23.Построение условных разверток
- •24.Гост 2.301-68 Форматы
- •25.Гост 2.302-68 Масштабы
- •26. Гост 2.303-68 Типы линий и их назначение
- •27. Гост 2.303-68 Типы лиий.Параметры, применение
- •28. Гост 2.304-81 Шрифты. Размеры шрифтов. Общие правила
- •29. Гост 2.307-68 Нанесение линейных размеров на чертеже
- •30. Гост 2.307-68 Нанесение размеров дуг и окружностей на чертеже
- •31.Уклоны.Конусность, Построение, обозначение
- •32.Окружность.Деление окружности на равные части
- •33.Виды аксонометрических проекций.Привести примеры
- •35.Прямоугольная изометрия
- •36.Прямоугольная диметрия
- •38.Единая модульная система-членение здания, обьемно-планировочные работы
- •39.Условные виды строительных чертежей, состав здания на проектировании
- •41.Стадии проектирования-типовой проект, госТы и документы для выполнения и оформления строительных чертежей
- •42.Масштабы для общестроительных чертежей и нанесение размеров на строительных чертежах-размерные линии, размерные числа, способы нанесения по ескд и гост 31.105-79 спдс
- •43.Параметры обозначения линии разреза здания по гост 2.305-68 и высотной отметки по гост 21.105-79
- •44.Координционные оси-определение, модульная сетка
- •45.Координационные оси-маркировка
- •46.Дополнительные координационные оси
- •47.Виды привязки к координационным осям
- •49.Порядок чтения строительных чертежей: виды-фасад, план, разрез
- •51.План здания-общее понятие
- •52.Последодовательность вычерчивания плана здания
- •53.Что обязательно наносят и указывают на планах этажей в соответствии с гост 21.501-80, 21.105-79, 21.107-78?
- •54.Что наносят вне контура плана здания
- •55.Условные графические обозначения санитарно-технических устройств правила их нанесения на гост 21.501-93
- •56.Условные графические обозначения отверстий, дымовых и вентиляционных каналов, различных оконных проемов по гост 21.501-93, правила нанесения железнодорожного пути на планах по гост 21.107-78
- •57.Условные графические обозначения дверей различной конфигурации и маркировка заполнения проемов ворот и дверей на планах по гост 21.501-80, 21.105-79, 21.107-78?
- •58.Фасад здания общи понятия
- •59.Что обязательно наносят и указывают на чертеже фасада по гост 21.501-80, 21.105-79, 21.107-78
- •60.Привести графические примеры условных графические изображения различных оконных проемов по гост 21.501-93 и примеры маркировки заполнения этих оконных проемов на фасадах
- •61.Разрез здания – общие понятие
- •62.Последовательность построения разреза здания
- •67.Назначение проекций с числовыми отметками
- •69.Построение сечений топографических поверхностей плоскостями
- •70.Построение точки пересечения прямой с топографической поверхностью
8.Правильные многранники.Примеры7
Правильным многогранником называется такой многогранник, у которого все грани равны и представляют собой равные правильные многоугольники, все ребра и все вершины также равны между собой. Примеры: тетраэдр, куб, октаэдр, додекаэдр.
9. Взаимные пересечения поверхностей вращения.Общий принцип
При решении задач на взаимное пересечение поверхностей требуется, как правило, найти линию общую для двух или более поверхностей. Поверхности вращения пересекаются по пространственной кривой.
2. Способ вспомогательных секущих плоскостей
Для построения линии пересечения двух поверхностей их пересекают третьей поверхностью, которую называют посредником. В качестве вспомогательных поверхностей выбирают такие, которые пересекали бы данные поверхности по простым линиям - окружностям или прямым. Обычно поверхности - посредники - это плоскости или сферы.От сюда и способ вспомогательных секущих плоскостей.
Прежде чем решить вопрос, какую вспомогательную поверхность выбрать, следует выяснить, не занимает ли одна из данных поверхностей проецирующее положение, так как в этом случае решение задачи значительно упрощается. Одна из проекций линии пересечения будет совпадать с очерком проецирующей поверхности. И решение сводится к построению недостающей проекции линии, принадлежащей поверхности по одной ее проекции и по проекциям поверхностей. рассмотрим построение линии пересечения на геометрическом теле, представляющем собой прямой круговой конус со сквозным цилиндрическим отверстием, ось которого перпендикулярна оси вращения конуса. В качестве вспомогательных секущих плоскостей выбираем горизонтальные секущие плоскости γ1 – γ5 , пересекающие конус по окружностям, которые проецируются на горизонтальную Плоскость Проекций Без искажения.
Самая верхняя точка линии пересечения – точка 1– определяется с помощью вспомогательной плоскости γ1, которая пересекает конус по окружности радиуса R1. Горизонтальная проекция точки 1′ находится на пересечении этой окружности с вертикальной осью конуса. Самая нижняя точка линии пересечения – точка 5– определяется с помощью вспомогательной плоскости γ5. Крайние точки линии пересечения 3 и 7 находятся с помощью секущей плоскости γ3. Плоскости γ2 и γ4 позволяют получить промежуточные точки 2, 4, 6 и 8. После того, как будут получены все точки линии пересечения на горизонтальной и фронтальной плоскостях проекций, проводим линии связи на профильную проекцию геометрического тела и строим профильные проекции точек пересечения 1′′′ − 8′′′. Так как цилиндрическое отверстие сквозное, то на противоположной стороне конуса будет располагаться зеркальное изображение линии пересечения, которое строится с помощью тех же секущих плоскостей γ1 – γ5. Полученные точки на горизонтальной и профильной проекциях соединяют плавными линиями.
10.Взаимные пересечения соосных поверхностей вращения
. Пересечение соосных поверхностей вращения. Соосными называют поверхности с общей осью вращения (рис. 63, а). Соосные поверхностивращения пересекаются по окружности. Если общая ось этих поверхностей параллельна какой-либо плоскости проекций, то линия пересечения(окружность) проецируется на эту плоскость проекций отрезком прямой, который перпендикулярен проекции оси и соединяет точки пересеченияочертаний этих поверхностей. Для определения линии пересечения двух произвольных поверхностей вращения целесообразно воспользоваться одним свойством, присущим поверхностям вращения, которое состоит в том, что две любые соосные поверхности вращения пересекаются по окружностям, проходящим через точки пересечения меридианов поверхностей .
показаны два цилиндра равного диаметра с пересекающимися под прямым углом осями. Из точки пересечения осей проведена сфера, равная диаметру цилиндров. Обе поверхности пересекаются по линии, состоящей из двух эллипсов.
