- •2.Задание точки, прямой и плоскости на комплексном чертеже
- •3.Точка, прямая и плоскость в ортогоналных проекциях
- •4.Уметь задать плоскость не менее чем 6 способами
- •5.Взаимное положение прямых. Уметь построить изображение параллельных, пересекающихся и скрещивающихся прямых, конкурирующие точки
- •6.Основные позиционные задачи
- •7.Виды многгранников
- •8.Правильные многранники.Примеры7
- •9. Взаимные пересечения поверхностей вращения.Общий принцип
- •2. Способ вспомогательных секущих плоскостей
- •10.Взаимные пересечения соосных поверхностей вращения
- •11.Метод перемены плоскостей проекции
- •12.Пересечение многогранников плоскостью и прямой
- •13.Построение взаимного пересечения многранников
- •14.Основные метрические задачи
- •15.Образование поверхностей.Определитель
- •16.Определение кривой линии.
- •17.Кривые линии. Плоские и пространственные кривые
- •18.Классификация поверхностей
- •20.Виды разверток. Их применение в технике
- •21.Использование разверток в макетировании
- •22.Развертываемые и неразвертываемые поверхности
- •23.Построение условных разверток
- •24.Гост 2.301-68 Форматы
- •25.Гост 2.302-68 Масштабы
- •26. Гост 2.303-68 Типы линий и их назначение
- •27. Гост 2.303-68 Типы лиий.Параметры, применение
- •28. Гост 2.304-81 Шрифты. Размеры шрифтов. Общие правила
- •29. Гост 2.307-68 Нанесение линейных размеров на чертеже
- •30. Гост 2.307-68 Нанесение размеров дуг и окружностей на чертеже
- •31.Уклоны.Конусность, Построение, обозначение
- •32.Окружность.Деление окружности на равные части
- •33.Виды аксонометрических проекций.Привести примеры
- •35.Прямоугольная изометрия
- •36.Прямоугольная диметрия
- •38.Единая модульная система-членение здания, обьемно-планировочные работы
- •39.Условные виды строительных чертежей, состав здания на проектировании
- •41.Стадии проектирования-типовой проект, госТы и документы для выполнения и оформления строительных чертежей
- •42.Масштабы для общестроительных чертежей и нанесение размеров на строительных чертежах-размерные линии, размерные числа, способы нанесения по ескд и гост 31.105-79 спдс
- •43.Параметры обозначения линии разреза здания по гост 2.305-68 и высотной отметки по гост 21.105-79
- •44.Координционные оси-определение, модульная сетка
- •45.Координационные оси-маркировка
- •46.Дополнительные координационные оси
- •47.Виды привязки к координационным осям
- •49.Порядок чтения строительных чертежей: виды-фасад, план, разрез
- •51.План здания-общее понятие
- •52.Последодовательность вычерчивания плана здания
- •53.Что обязательно наносят и указывают на планах этажей в соответствии с гост 21.501-80, 21.105-79, 21.107-78?
- •54.Что наносят вне контура плана здания
- •55.Условные графические обозначения санитарно-технических устройств правила их нанесения на гост 21.501-93
- •56.Условные графические обозначения отверстий, дымовых и вентиляционных каналов, различных оконных проемов по гост 21.501-93, правила нанесения железнодорожного пути на планах по гост 21.107-78
- •57.Условные графические обозначения дверей различной конфигурации и маркировка заполнения проемов ворот и дверей на планах по гост 21.501-80, 21.105-79, 21.107-78?
- •58.Фасад здания общи понятия
- •59.Что обязательно наносят и указывают на чертеже фасада по гост 21.501-80, 21.105-79, 21.107-78
- •60.Привести графические примеры условных графические изображения различных оконных проемов по гост 21.501-93 и примеры маркировки заполнения этих оконных проемов на фасадах
- •61.Разрез здания – общие понятие
- •62.Последовательность построения разреза здания
- •67.Назначение проекций с числовыми отметками
- •69.Построение сечений топографических поверхностей плоскостями
- •70.Построение точки пересечения прямой с топографической поверхностью
7.Виды многгранников
Куб, шар, пирамида, цилиндр, конус — геометрические тела. Среди них выделяют многогранники. Многогранникомназывают геометрическое тело, поверхность которого состоит из конечного числа многоугольников. Каждый из этих многоугольников называется гранью многогранника, стороны и вершины этих многоугольников — соответственно ребрами и вершинами многогранника.
Двугранные углы между соседними гранями, т.е. гранями, имеющими общую сторону — ребро многогранника — являются также и двугранными умами многогранника. Углы многоугольников — граней выпуклого многоугольника — являются плоскими умами многогранника. Кроме плоских и двугранных углов у выпуклого многогранника имеются еще и многогранные углы. Эти углы образуют грани, имеющие общую вершину.
Среди многогранников различают призмы и пирамиды.
Призма — это многогранник, поверхность которого состоит из двух равных многоугольников и параллелограммов, имеющих общие стороны с каждым из оснований.
Два равных многоугольника называются основаниями ггризмьг, а параллелограммы — ее боковыми гранями. Боковые грани образуют боковую поверхность призмы. Ребра, не лежащие в основаниях, называются боковыми ребрами призмы.
Призму называют п-угольной, если ее основаниями являются я-угольники. На рис. 24.6 изображена четырехугольная призма АВСDА'В'С'D'.
Призму называют прямой, если ее боковыми гранями являются прямоугольники (рис. 24.7).
Призму называют правильной, если она прямая, а ее основания — правильные многоугольники.
Четырехугольную призму называют параллелепипедом, если ее основания — параллелограммы.
Параллелепипед называют прямоугольным, если все его грани — прямоугольники.
Диагональ параллелепипеда — это отрезок, соединяющий его противоположные вершины. У параллелепипеда четыре диагонали.
Пирамида - это многогранник, одна грань которого многоугольник, а остальные грани - треугольники с общей вершиной. Пирамида называется правильной, если в основании лежит правильный многоугольник и высота пирамиды проходит через центр многоугольника. Пирамида называется усеченной, если вершина её отсекается плоскостью (рис.67).
|
|
|
|
||
|
||
а) модель |
б) эпюр |
|
Рисунок 67. Пирамида |
||
2. Призма - многогранник, две грани которого (основания призмы) представляют собой равные многоугольники с взаимно параллельными сторонами, а все другие грани параллелограммы. Призма называется прямой, если её ребра перпендикулярны плоскости основания. Если основанием призмы является прямоугольник, призму называют параллелепипедом (рис. 68).
|
|
|
|
||
|
||
а) модель |
б) эпюр |
|
Рисунок 68. Призма |
||
3. Призматоид - многогранник, ограниченный двумя многоугольниками, расположенными в параллельных плоскостях (они являются его основаниями); его боковые грани представляют собой треугольники или трапеции, вершины которых являются и вершинами многоугольников оснований (рис.69).
|
|
|
|
||
|
||
а) модель |
б) эпюр |
|
Рисунок 69. Призматоид |
||
4. Тела Платона. Многогранник, все грани которого представляют собой правильные и равные многоугольники, называют правильными. Углы при вершинах такого многогранника равны между собой.
Существует пять типов правильных многогранников. Эти многогранники и их свойства были описаны более двух тысяч лет назад древнегреческим философом Платоном, чем и объясняется их общее название.
Каждому правильному многограннику соответствует другой правильный многогранник с числом граней, равным числу вершин данного многогранника. Число ребер у обоих многогранников одинаково.
Тетраэдр - правильный четырехгранник (рис.70). Он ограничен четырьмя равносторонними треугольниками (это - правильная треугольная пирамида).
|
|
|
|
|
|||
|
|||
а) модель |
б) эпюр |
||
Рисунок 70. Тетраэдр |
|||
Гексаэдр - правильный шестигранник (рис. 71). Это куб состоящий из шести равных квадратов.
|
|
|
|
||
|
||
а) модель |
б) эпюр |
|
Рисунок 71. Гексаэдр |
||
Октаэдр - правильный восьмигранник (рис.72). Он состоит из восьми равносторонних и равных между собой треугольников, соединенных по четыре у каждой вершины.
|
|
|
|
||
|
||
а) модель |
б) эпюр |
|
Рисунок 72. Октаэдр |
||
Додекаэдр - правильный двенадцатигранник, состоит из двенадцати правильных и равных пятиугольников, соединенных по три около каждой вершины (
|
|
|
|
