- •2.Задание точки, прямой и плоскости на комплексном чертеже
- •3.Точка, прямая и плоскость в ортогоналных проекциях
- •4.Уметь задать плоскость не менее чем 6 способами
- •5.Взаимное положение прямых. Уметь построить изображение параллельных, пересекающихся и скрещивающихся прямых, конкурирующие точки
- •6.Основные позиционные задачи
- •7.Виды многгранников
- •8.Правильные многранники.Примеры7
- •9. Взаимные пересечения поверхностей вращения.Общий принцип
- •2. Способ вспомогательных секущих плоскостей
- •10.Взаимные пересечения соосных поверхностей вращения
- •11.Метод перемены плоскостей проекции
- •12.Пересечение многогранников плоскостью и прямой
- •13.Построение взаимного пересечения многранников
- •14.Основные метрические задачи
- •15.Образование поверхностей.Определитель
- •16.Определение кривой линии.
- •17.Кривые линии. Плоские и пространственные кривые
- •18.Классификация поверхностей
- •20.Виды разверток. Их применение в технике
- •21.Использование разверток в макетировании
- •22.Развертываемые и неразвертываемые поверхности
- •23.Построение условных разверток
- •24.Гост 2.301-68 Форматы
- •25.Гост 2.302-68 Масштабы
- •26. Гост 2.303-68 Типы линий и их назначение
- •27. Гост 2.303-68 Типы лиий.Параметры, применение
- •28. Гост 2.304-81 Шрифты. Размеры шрифтов. Общие правила
- •29. Гост 2.307-68 Нанесение линейных размеров на чертеже
- •30. Гост 2.307-68 Нанесение размеров дуг и окружностей на чертеже
- •31.Уклоны.Конусность, Построение, обозначение
- •32.Окружность.Деление окружности на равные части
- •33.Виды аксонометрических проекций.Привести примеры
- •35.Прямоугольная изометрия
- •36.Прямоугольная диметрия
- •38.Единая модульная система-членение здания, обьемно-планировочные работы
- •39.Условные виды строительных чертежей, состав здания на проектировании
- •41.Стадии проектирования-типовой проект, госТы и документы для выполнения и оформления строительных чертежей
- •42.Масштабы для общестроительных чертежей и нанесение размеров на строительных чертежах-размерные линии, размерные числа, способы нанесения по ескд и гост 31.105-79 спдс
- •43.Параметры обозначения линии разреза здания по гост 2.305-68 и высотной отметки по гост 21.105-79
- •44.Координционные оси-определение, модульная сетка
- •45.Координационные оси-маркировка
- •46.Дополнительные координационные оси
- •47.Виды привязки к координационным осям
- •49.Порядок чтения строительных чертежей: виды-фасад, план, разрез
- •51.План здания-общее понятие
- •52.Последодовательность вычерчивания плана здания
- •53.Что обязательно наносят и указывают на планах этажей в соответствии с гост 21.501-80, 21.105-79, 21.107-78?
- •54.Что наносят вне контура плана здания
- •55.Условные графические обозначения санитарно-технических устройств правила их нанесения на гост 21.501-93
- •56.Условные графические обозначения отверстий, дымовых и вентиляционных каналов, различных оконных проемов по гост 21.501-93, правила нанесения железнодорожного пути на планах по гост 21.107-78
- •57.Условные графические обозначения дверей различной конфигурации и маркировка заполнения проемов ворот и дверей на планах по гост 21.501-80, 21.105-79, 21.107-78?
- •58.Фасад здания общи понятия
- •59.Что обязательно наносят и указывают на чертеже фасада по гост 21.501-80, 21.105-79, 21.107-78
- •60.Привести графические примеры условных графические изображения различных оконных проемов по гост 21.501-93 и примеры маркировки заполнения этих оконных проемов на фасадах
- •61.Разрез здания – общие понятие
- •62.Последовательность построения разреза здания
- •67.Назначение проекций с числовыми отметками
- •69.Построение сечений топографических поверхностей плоскостями
- •70.Построение точки пересечения прямой с топографической поверхностью
6.Основные позиционные задачи
Основными позиционными задачами называются задачи на определение взаимного расположения точки, прямой и плоскости.
Для видимости на чертеже применяется метод конкурирующих точек. Конкурирующими называются точки, расположенные на одной проецирующей прямой. На рисунке 4.1 (АВ) ^П1, следовательно точки А и В – фронтально-конкурирующие. (СD) ^П2, поэтому точки С и D – горизонтально-конкурирующие. Точка С находится выше точки D, поэтому точка С является видимой на горизонтальной проекции. Ордината точки Абольше, чем точки В, поэтому точка А находится ближе к зрителю, следовательно, она является видимой на фронтальной проекции.
Прямые и точки, лежащие в плоскости. Прямая принадлежит плоскости, если две ее точки принадлежат данной плоскости. На рисунке 4.2 показана прямая l, принадлежащая плоскости a(bÇc), поскольку имеет с нею две общие точки – В и С.
Точка принадлежит плоскости, если она расположена на прямой, принадлежащей данной плоскости. Для того чтобы построить в плоскости a(bÇc) точку K (рисунок 4.2), необходимо провести в плоскости прямую l, принадлежащую плоскости a(bÇc), а затем задать на ней точку K, которая принадлежит прямой l и, следовательно, плоскости a(bÇc).
Главные линии плоскости. Среди множества прямых, которые могут быть проведены в плоскости, следует выделить главные линии плоскости:
1. Горизонтали – прямые, принадлежащие плоскости и параллельные горизонтальной плоскости проекций (рисунок 4.3а). Фронтальная проекция горизонтали горизонтальна.
|
|
|
|
2. Фронтали – прямые, принадлежащие плоскости и параллельные фронтальной плоскости проекций (рисунок 4.3б). Горизонтальная проекция фронтали горизонтальна.
3. Линии наибольшего ската(наклона) — прямые, принадлежащие данной плоскости и перпендикулярные горизонталям (или фронталям) плоскости. На рисунке 4.4 показана линия наибольшего ската MN плоскости a.
Следует отметить, что следы плоскости также являются главными линиями плоскости – горизонталью и фронталью, совмещенными с плоскостями проекций. Главные линии плоскости в качестве вспомогательных прямых облегчают решение ряда задач.
Взаимное
положение двух плоскостей.
Две плоскости в пространстве могут быть
параллельными или пересекающимися. Две
плоскости параллельны,
если две пересекающиеся прямые одной
плоскости соответственно параллельны
двум пересекающимся прямым второй
плоскости. Если параллельные плоскости
задаются на эпюре следами, то одноименные
следы этих плоскостей должны быть
параллельны. На рисунке 4.5 плоскость a(aÇb)
параллельна плоскости b(сÇd),
поскольку с || а(с1 || а1,
с2 || а2 ), d || b (d1 || b1,
d2 || b2 ) .
Для
построения точки пересечения прямой
линии l с
плоскостью a(АВС)
необходимо(рисунок 4.9):
1)
провести через прямую l вспомогательную
проецирующую плоскость b;
2) построить линию MN пересечения
данной плоскости a и вспомогательной
плоскости b;
3) определить искомую точку К пересечения
данной прямой l с
линией пересечения плоскостей MN (в
случае если l || MN,
то прямая lпараллельна
плоскости a, если l Î MN,
то прямая l принадлежит
плоскости a).
