- •Лабораторный практикум. Решение оптимизационных задач в среде Microsoft Excel
- •Информационные технологии
- •Оглавление
- •Лабораторная работа №1 «Назначение надстройки Поиск решения в электронных таблицах Excel»
- •1 Общие сведения
- •1.1 Оптимизационное моделирование в экономике
- •1.2 Надстройка Поиск решения
- •1.2.1 Назначение надстройки Поиск решения
- •1.2.2 Ограничения в задачах
- •1.2.3 Виды математических моделей
- •1.2.4 Установка надстройки Поиск решения
- •1.3 Нахождение оптимального решения с помощью надстройки Поиск решения
- •1.3.1 Последовательность работы с надстройкой Поиск решения
- •1.3.2 Изменение параметров работы
- •1.3.3 Создание отчетов по результатам поиска решения
- •1.3.4 Сохранение параметров модели
- •1.3.5 Загрузка параметров модели
- •2 Содержание работы
- •3 Методика выполнения работы. Нахождение оптимального решения с помощью надстройки Поиск решения на примере задачи Модель сбыта
- •3.1 Структура рабочего листа задачи Модель сбыта
- •3.2 Поиск оптимального решения в задаче Модель сбыта
- •3.2.1 Нахождение значения, при котором заданная величина максимальна
- •3.2.2 Нахождение значения за счет изменения нескольких величин
- •3.2.3 Добавление ограничения
- •3.2.4 Изменение ограничения
- •3.2.5 Сохранение модели задачи Модель сбыта
- •4 Вопросы для самоконтроля знаний
- •Лабораторная работа №2 «Решение задач линейного программирования методом оптимизации с помощью надстройки Поиск решения»
- •1 Общие сведения
- •1.1 Линейная оптимизация
- •2 Содержание работы
- •3 Методика выполнения работы. Нахождение оптимального решения линейной задачи с помощью надстройки Поиск решения на примере задачи Планирование производства материалов
- •3.1 Формулировка математической модели задачи
- •3.2 Решение задачи с помощью надстройки Поиск решения
- •Планирование производства материалов
- •4 Вопросы для самоконтроля знаний
- •Лабораторная работа №3 «Решение транспортных задач методом оптимизации с помощью надстройки Поиск решения»
- •1 Общие сведения
- •1.1 Транспортная задача
- •2 Содержание работы
- •3 Методика выполнения работы. Нахождение оптимального решения транспортной задачи с помощью надстройки Поиск решения на примере задачи Транспортные расходы
- •3.1 Проверка сбалансированности модели задачи
- •3.2 Построение математической модели
- •3.3 Решение задачи с помощью надстройки Поиск решения
- •4 Вопросы для самоконтроля знаний
- •Лабораторная работа №4 «Решение задач дискретного программирования методом оптимизации с помощью надстройки Поиск решения»
- •1 Общие сведения
- •1.1 Дискретное программирование
- •2 Содержание работы
- •3 Методика выполнения работы. Нахождение оптимального решения задачи с помощью надстройки Поиск решения на примере задачи о назначениях
- •3.1 Проверка задачи на сбалансированность
- •3.2 Построение математической модели задачи
- •3.3 Решение задачи с помощью надстройки Поиск решения
- •4 Вопросы для самоконтроля знаний
- •Лабораторная работа №5 «Решение задач нелинейного программирования методом оптимизации с помощью надстройки Поиск решения»
- •1 Общие сведения
- •1.1 Нелинейное программирование
- •2 Содержание работы
- •3 Методика выполнения работы. Нахождение оптимального решения задачи по нелинейному программированию с помощью надстройки Поиск решения на примере системы нелинейных уравнений
- •4 Вопросы для самоконтроля знаний
- •Библиографический список
- •Приложение а Задачи для самостоятельной работы
- •1. Структура производства с уменьшением нормы прибыли
- •Продолжение приложения а
- •2. Транспортная задача
- •Продолжение приложения а
- •3. График занятости персонала Парка отдыха
- •Продолжение приложения а
- •4. Управление оборотным капиталом
- •Продолжение приложения а
- •Продолжение приложения а
- •5.ЬПортфель ценных бумаг
- •Продолжение приложения а
- •Продолжение приложения а
- •6. Вычисление сопротивления в электрической цепи
- •Приложение б Задачи для самостоятельной работы по линейному программированию
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Приложение в Задачи для самостоятельной работы
- •Приложение г Задачи для самостоятельной работы по дискретному программированию
- •Продолжение Приложения г
- •Продолжение Приложения г
- •Продолжение Приложения г
- •Продолжение Приложения г
- •Приложение д Задачи для самостоятельной работы по нелинейному программированию
Лабораторная работа №5 «Решение задач нелинейного программирования методом оптимизации с помощью надстройки Поиск решения»
Цель работы: Овладеть приемами работы с надстройкой Поиск решения при решении задач по нелинейному программированию. Научиться:
находить оптимальное решение задачи с помощью надстройки Поиск решения при решении задач по нелинейному программированию;
создавать отчеты по результатам поиска решения;
сохранять параметры модели.
1 Общие сведения
1.1 Нелинейное программирование
Задача нелинейного программирования формулируется подобно задаче линейного программирования, но с учетом того, что целевая функция или/и хотя бы одно ограничение являются нелинейными. Вследствие этого задачи нелинейного программирования (НП) сложнее задач линейного программирования (ЛП). И для них не существует общего метода решения, который был бы аналогичен симплексному методу в ЛП. Следует также заметить, что задачи нелинейного программирования включают также нелинейные целочисленные задачи и задачи дискретного программирования. С учетом методов решения, задачи нелинейной оптимизации делятся на задачи условной оптимизации (поиск экстремума функции с учетом дополнительных условий в виде ограничений и граничных условий) и задачи безусловной оптимизации (поиск экстремума функции без всяких дополнительных условий).
Для решения такого типа задач существует много различных методов. Применение того или иного метода решения зависит от типа нелинейности. Надстройка Поиск решения помогает облегчить численное решение задач нелинейного программирования.
Рассмотрим решение системы нелинейных уравнений с двумя неизвестными с помощью средства Поиск решения.
Надстройка Поиск решения позволяет находить решение системы нелинейных уравнений с двумя неизвестными:
f
1
(x,y)
= C1,
f2 (x,y) = C2, (1)
где f1 (x,y), i=1,2 - нелинейная функция от переменных х и у, Ci , i=1,2 - произвольная постоянная.
Известно, что пара (x,y) является решением системы уравнений (1) тогда и только тогда, когда она является решением следующего нелинейного уравнения с двумя неизвестными:
(f1(x,y)-C1}2 + (f2(x,y)-C2}2 = 0 (2)
С другой стороны, решение системы (1) - это точки пересечения двух кривых: f1(x,y} = C1 и f2(x,y) = C2 на плоскости ХОY.
Из этого следует метод нахождения корней системы нелинейных уравнений:
1. Определить (хотя бы приближенно) интервал существования решения системы уравнений (1) или уравнения (2). Здесь необходимо учитывать вид уравнений, входящих в систему, область определения каждого их уравнений и т. п. Иногда применяется подбор начального приближения решения.
2. Протабулировать решение уравнения (2) по переменным x и y на выбранном интервале, либо построить графики функций f1(x,y)=Cl и f2(x,y)=C2 (система (1)).
3. Локализовать предполагаемые корни системы уравнений — найти несколько минимальных значений из таблицы табулирования корней уравнения (2), либо определить точки пересечения кривых, входящих в систему (1).
4. Найти корни для системы уравнений (1) с помощью надстройки Поиск решения.
