- •Метод базирования и выверки (регулирования) коленчатых валов на станках при механической обработке.
- •Содержание дефектовочных операций при ремонте фундаментных рам.
- •Методы ремонта изношенных поверхностей фундаментных рам.
- •Содержание дефектовочных операций при ремонта блок и крышек цилиндров.
- •Методы устранения износов и повреждений блоков и крышек цилиндров.
- •Износы и повреждения моноблоков вод и методы их устранения.
- •Ремонт шатунов.
- •Ремонт втулок цилиндров.
- •Ремонт поршней.
- •Классификация и причины образования дефектов.
- •Виды и характеристики процессов изнашивания.
- •Методы дефектоскопии применяемые в судоремонте.
- •Методы определения скорости изнашивания. Понятие износостойкости.
- •Химическая, электрохимическая и биокоррозия. Методы защиты судовых технических средств и элементов корпуса судна от коррозии в эксплуатации.
- •Судоподъемные средства и сооружения. Способы обнажения подводной части корпуса при отсутствии судоподъемных сооружений.
- •Восстановление работоспособности судовых машин и механизмов сваркой и наплавкой.
- •Восстановление работоспособности судовых машин и механизмов посредством напыления.
- •Восстановление работоспособности судовых машин и механизмов электролитическими методами.
- •20.Средства и методы технического диагностирования главной судовой дизельной установки.
- •21.Восстановление деталей судовых машин и механизмов с использованием синтетических материалов.
- •22.Химико-термическая обработка рабочих поверхностей деталей.
- •23.Термическая обработка рабочих поверхностей деталей. Методы поверхностной закалки.
- •24.Механические методы упрочнения деталей.
- •25.Ремонт гребных винтов. Статическая и динамическая балансировки.
- •26.Технологические процессы пробивки теоретической оси валопровода.
- •27.Технологические процессы сборки и центровки валопроводов.
- •28.Технологические процессы мойки и очистки дизеля и его деталей.
- •29.Единая система технологической подготовки производства.
- •30.Монтаж судового оборудования. Контроль качества монтажа.
- •1.Этапы монтажа судового оборудования
- •2. Базирование оборудования
- •3. Установка компенсирующих звеньев (подкладок)
- •4. Крепление оборудования на фундаменте
- •5. Контроль качества монтажа
- •31.Дефектация металлических корпусов судов.
- •1. Организация и методика проведения дефектации металлических корпусов судов
- •2. Определение технического состояния корпуса по износу связей
- •3. Определение оценки технического состояния корпуса по износу основных связей
- •5. Дефектация недопустимых и прочих дефектов
- •6. Назначение планируемой оценки технического состояния корпуса после ремонта
- •7. Определение объема ремонта
- •32.Индустриальные методы ремонта корпуса судна.
- •33.Ремонт котлов и теплообменных аппаратов.
- •1.Износы, повреждения и дефектация
- •34.Ремонт деталей механизма газораспределения.
- •35.Основные направления «индустриализации» судоремонта.
- •36.Лазерное упрочнение рабочих поверхностей деталей.
- •37.Сущность, параметры и преимущества гидропрессового соединения судовых деталей.
- •38.Методы оценки точности сборки кривошипно-шатунного механизма.
- •39.Испытания корпусных конструкций на герметичность после ремонта.
- •40.Основные параметры лазерной закалки. Схемы упрочнения плоских и цилиндрических деталей.
28.Технологические процессы мойки и очистки дизеля и его деталей.
Методы и средства очистки и мойки, применяемые для удаления загрязнений деталей судовых дизелей при ремонте, можно разделить на две группы - механические и физико-химические. Выбор каждого из них для практического использования зависит от конструктивных особенностей деталей, их материалов, природы загрязнений и других технологических факторов.
Среди механических методов очистки деталей наиболее эффективной является очистка косточковой крошкой. Косточковая крошка представляет собой продукт измельчения фруктовых косточек слив, абрикосов и других фруктов. Кинетическая энергия этим частицам (диаметром 1...3 мм) сообщается пневматическими устройствами, работающими по схемам принудительной, эжекторной и верхней подачи крошки. Большим преимуществом такой очистки наряду с высокой эффективностью, являются минимальные остаточные деформации очищаемых поверхностей, пригодность ее для очистки деталей из любых материалов и хорошее качество очистки. В дизелеремонтных цехах для очистки деталей косточковой крошкой используют специальные установки.
Пневмо- и гидроабразивные способы механической очистки имеют весьма ограниченное применение в современных технологических процессах. Объясняется это тем, что при использовании, например, пневмо-абразивного способа требуется надежная защита обслуживающего персонала от воздействия абразивной пыли. Обычно применяемые аппараты обладают высоким уровнем шума, процесс очистки сопровождается выделением вредного для дыхания атомарного кислорода при соударении твердых абразивных частиц с очищаемым металлом и т.д.
Физико-химические методы очистки деталей при ремонте подразделяют на методы очистки в электролитах и органических растворах или специальных моющих жидкостях.
Сущность электролитической очистки деталей состоит в том, что очищаемую деталь помещают в раствор электролита, через который пропускают постоянный ток. В результате электролиза на очищаемой поверхности интенсифицируется движение жидкости под действием выделяющегося газа.
В зависимости от полярности очищаемой детали различают катодную и анодную очистки.
Обычно катодная очистка является более эффективной. Однако при этом происходит наводораживание поверхностных слоев очищаемой детали. Наводораживание ухудшает эксплуатационные свойства деталей из-за так называемой водородной хрупкости. Для устранения вредного влияния водородной хрупкости ответственные детали после катодной очистки дополнительно обрабатывают с целью обезводораживания.
В практических условиях чаще используют анодную очистку, при которой деталь является анодом.
Физико-химические методы очистки в органических растворах и специальных жидкостях являются наиболее целесообразными в специализированном ремонтном производстве, так как позволяют сравнительно просто механизировать и автоматизировать процесс очистки.
Различают две разновидности физико-химических методов очистки в растворах и моющих жидкостях: очистку погружением детали в раствор моющей жидкости и очистку струйным способом.
При очистке погружением детали располагают в специальных ваннах с моющей жидкостью, в качестве которой используют щелочные растворы и растворители. Интенсифицируют процесс очистки в этом случае дополнительным подогревом щелочных растворов до 350-370К и возбуждением моющего препарата барбатером, лопастными винтами или затопленными струями.
Струйный способ очистки осуществляют подачей раствора под давлением на очищаемую поверхность. Благодаря комплексному физико-механическому удалению загрязнений при струйном способе появляется возможность значительно сократить время очистки. В этом случае используют менее концентрированные моющие растворы.
Большое влияние на качество и производительность струйной очистки оказывают количество подаваемой жидкости и форма струи. Наиболее часто применяют плоские и конусообразные струи, получаемые профилированием насадок моющей установки. Предпочтительными являются конусообразные струи, поскольку обеспечивают максимальный охват очищаемой поверхности при достаточном давлении рабочей струи и незначительном расходе жидкости.
Технологический процесс физико-химической очистки деталей включает в себя несколько операций, основными из которых являются обезжиривание, промывка и сушка очищаемых поверхностей.
Механизацию физико-химической очистки дизелей, сборочных единиц и отдельных деталей обеспечивают в практических условиях использованием специальных моечных установок, которые проектируют и изготавливают в виде двух- или трехкамерных машин. В двухкамерных моечных установках первая камера предназначена для очистки и обезжиривания деталей, а вторая - для промывки обезжиренных и очищаемых деталей горячей водой. В трехкамерных установках третья камера предусмотрена для просушивания деталей горячим воздухом.
Все механизированные моечные установки разделяют на машины тупикового и конвейерного типа.
Особое место среди методов очистки деталей от загрязнений занимает ультразвуковой метод. В основе этого метода лежит явление кавитации, сопровождающееся сложным комплексом физических, химических, электрических и гидродинамических явлений. Ультразвуковой метод является универсальным процессом интенсификации очистки деталей в жидких моющих составах. При ультразвуковой очистке в моющей жидкости с помощью магнитострикционных и пьезоэлектрических преобразователей возбуждают колебания ультразвуковой частоты (20-30 кГц) и за счет высокой объемной плотности энергии создают общие и местные гидродинамические потоки. Эти потоки при определенных давлениях приводят к появлению кавитации. При разрыве пузырьков возникают ударные волны и кумулятивные струи, которые, воздействуя на очищаемую поверхность, приводят к микро- и макроразрушениям загрязнений.
Состав моющих жидкостей устанавливают в каждом конкретном случае в зависимости от материалов детали и от условий их эксплуатации.
По природе своего образования все загрязнения, подлежащие обязательному удалению при ремонте, разделяют на следующие три группы:
продукты высокотемпературных превращений масел, топлив, рабочих жидкостей и т.д. (нагароотложения, лаковые отложение, смолы и осадки);
деструктированные (старые) лакокрасочные и другие неметаллические покрытия;
консервирующие покрытия и материалы.
Нагароотложения по своей структуре могут быть плотными, рыхлыми и пластинчатыми. Они образуются на деталях дизелей (головках поршня, клапанах и т.д.), работающих при высоких температурах, ухудшают надежность работы цилиндропоршневой группы, а при достижении больших толщин приводят к необходимости ремонта. Нагарообразования отличаются высокой механической прочностью и хорошей адгезией к поверхности детали. Поэтому их относят к наиболее трудно удаляемым загрязнениям. Химико-механические свойства нагароотложений определяются сортом топлива и масла, а также условиями их образования.
Лаковые отложения представляют собой результат совместного взаимодействия кислорода воздуха, высоких температур и катализации металла. Они образуются в виде тонкой и прочной пленки с гладкой поверхностью. Лаковые отложения проявляются наиболее интенсивно при высоких, но недостаточных для сгорания масла температурах на таких деталях, как коленчатые валы, поршни (пригорание поршневых колец в канавках поршня), картеры и др. По химическому составу лаковые отложения отличаются от нагарообразований добавками масел и оксикислот.
Смолистые отложения образуются вследствие окисления полимеризации ненасыщенных углеводородов. Они являются характерными загрязнениями топливной системы дизелей. Внешне смолистые отложения представляют легкоплавкие вещества от темно-коричневого до черного цвета.
Осадки в виде густой липкой массы серо-коричневого или черного цвета состоят в основном из масел и воды с присадками асфальтенов, кар-бенов, а также незначительного количества золы, сажи и пыли. Осадки создают чаще всего чисто механические препятствия нормальной работе масляной и топливной системам дизелей. Так как их адгезия к металлическим поверхностям относительно невелика, то удаление загрязнений в виде осадков обычно затруднений не вызывает.
На выбор компонентов моющих жидкостей наибольшее влияние оказывает вид загрязнения и природа их образования.
В общем случае к моющим жидкостям, предназначенным для удаления загрязнений с металлических поверхностей, предъявляют следующие требования:
максимальной моющей способности по отношению к конкретному виду загрязнения;
минимального разрушающего действия на очищаемую поверхность и токсического воздействия на человека;
возможно большей разницы в плотностях моющей жидкости и загрязнения;
пожарной безопасности.
Физическая сущность механизма эффективного моющего действия жидкости на загрязнение состоит в том, что очищающая жидкость всегда образует на границе с металлом некоторый краевой угол, постоянный для данного химического состава ее. В том случае, когда этот краевой угол оказывается меньше краевого угла, образуемого загрязнением, очищающая жидкость проникает сквозь пленку загрязнения непосредственно к поверхности металла и, нарушая адгезию, отделяет частицы отложений. Уменьшению краевого угла моющей жидкости способствует применение поверхностно-активных веществ (ПАВ). Эти вещества значительно снижают свободную межфазовую энергию на границе раствора и загрязнения, проникают в масляную пленку, разрушают ее с образованием комплексных соединений и за счет этого создают благоприятные условия для вытеснения масляной пленки обезжиривающим раствором. Одновременно благодаря химическому взаимодействию жидкие загрязнения переходят в раствор моющего препарата с образованием эмульсий и суспензий.
Все ПАВ в моющих растворах обычно используют совместно со щелочными солями - каустической содой (NaOH), нитрофосфатом натрия (Na4P2O7), триполифосфатом натрия (Na5P7O10) и др. Получаемые при этом составы обладают хорошими эмульгирующими свойствами и способствуют переходу грубодисперсной фазы загрязнений в коллоидный раствор.
