Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций по автотормозам.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
34.31 Mб
Скачать

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ СВЕРДЛОВСКОЙ ОБЛАСТИ

Государственное автономное профессиональное образовательное учреждение Свердловской области

«УРАЛЬСКИЙ ЖЕЛЕЗНОДОРЖНЫЙ ТЕХНИКУМ»

АВТОМАТИЧЕСКИЕ ТОРМОЗА

ТПС

КОНСПЕКТ ЛЕКЦИЙ

Екатеринбург 2017 г.

Теория торможения

ОБЩИЕ СВЕДЕНИЯ О ТОРМОЗАХ

В процессе движения поезда на него действуют силы различные по своему характеру и направлению. Различают силы внешние (например, сила сопротивления движению от уклона) и внутренние (например, сила трения в моторно-осевых подшипниках). Внешние силы можно разделить на управляемые (сила тяги) и неуправляемые (силы сопротивления движению). Кроме того, при любом изменении скорости движения на поезд действует сила инерции. В зависимости от соотношения управляемых и неуправляемых сил поезд может двигаться ускоренно, замедленно или с равномерной скоростью.

Сила тяги - внешняя движущая сила, которая создается тяговыми электродвигателями локомотива во взаимодействии с рельсами. Она приложена к ободу колес в направлении движения. Для остановки поезда необходимо исключить действие сипы тяги, то есть отключить тяговые двигатели локомотива. Однако, поезд продолжит движение по инерции за счет накопленной кинетической энергии и до полной остановки пройдет значительное расстояние. Чтобы обеспечить остановку поезда в требуемом месте или снижение скорости движения на определенном участке следования, необходимо искусственно увеличить силы сопротивления движению.

Устройства, применяемые в поездах для создания искусственного сопротивления движению, называются тормозами, а силы, создающие искусственное сопротивление движению - тормозными силами.

Тормозные силы – это силы, создающие искусственное сопротивление движению.

Тормозные устройства – это устройства, применяемые в поездах для искусственного увеличения сил сопротивления движению.

Тормозные силы и силы сопротивления движению гасят кинетическую энергию движущегося поезда. Наиболее распространенным средством для получения тормозных сил является колодочный тормоз. При трении ТК о поверхность катания колеса кинетическая энергия поезда превращается в тепловую.

Тормоза являются главным средством, обеспечивающим безопасность и рост скоростей движения поездов.

Максимальная скорость движения устанавливается исходя из максимального тормозного пути. Повышение эффективности тормозов ведет к сокращению тормозного пути и увеличению технической скорости, т.е. к повышению безопасности движения и росту пропускной способности железных дорог.

Тормозные силы и силы сопротивления движению гасят кинетическую энергию движущегося поезда.

Представим поезд в виде точки М и силы, которые на него действуют.

где М – поезд;

Fк – сила тяги локомотива;

W – силы сопротивления движению поезда;

Вт – тормозная сила.

Если поезд следует в режиме тяги, то на него действуют две силы. Это сила тяги локомотива Fк, которая придает поезду положительное ускорение и сила сопротивления движению, которая придает поезду отрицательное ускорение (Fк–W). При отключении силы тяги на поезд будет действовать только сила сопротивления движению поезда (W). При торможении на поезд действуют также две силы. Первая – это сила сопротивления движению поезда и вторая тормозная сила (-W – Вт). Тогда уравнение движения поезда запишется следующим образом: Fу = Fк – W – Вт ;

Схема разложения скоростей на движущемся колесе

Д ля торможения подвижного состава к нему должны быть приложены внешние силы от неподвижных рельсов. Действие этих сил должно быть направлено против направления движения поезда. Рассмотрим кинематику катящейся колесной пары. Она совершает сложное движение, состоящее из двух простых (рис. 1.1): прямолинейное движение вдоль пути вместе со всем поездом со скоростью V км/ч и вращательного w вокруг собственной оси О.

Вращательное движение обусловлено сцеплением колес с рельсами в точках их контактов О1 . Это сцепление происходит под действием вертикальной нагрузки q. Окружная скорость вращения колеса на поверхности качения равна поступательной скорости поезда, т.е. V км/ч. В точке колеса О2, находящейся в данное мгновение в самом верхнем положении, поступательное и вращательное движения направлены в одну и ту же сторону - вперед (по ходу движения поезда), поэтому скорости поступательного и вращательного движения складываются, и мгновенная абсолютная скорость колеса в этой точке оказывается V + V = 2V, т. е. вдвое больше скорости поезда. Нижняя точка О1, находящаяся в сцеплении с рельсом, в каждый момент времени качения колеса оказывается неподвижной (- V + V = 0). В течение этого мгновения колесо как бы поворачивается вокруг точки сцепления О1, которая в механике называется «мгновенный центр поворота». Таким образом, колесо в точке его сцепления с рельсом катится по нему вперед и с такой же скоростью вращается обратно. Это означает, что в точке О1 сила трения отсутствует, а действует только сила сцепления, которая образуется за счет взаимодействия микроскопических неровностей на поверхностях колеса и рельса, а также за счет сил молекулярного притяжения, возникающих под действием нагрузки q, значение которой достигает 15 кгс/см2.

Образование тормозной силы

При движении состава ему сообщается кинетическая энергия, величина которой зависит от скорости и массы.

Ек= mV²/2

Для снижения скорости и остановки в заданном месте, необходимо частично или полностью гасить данную кинетическую энергию, сообщаемую поезду тяговыми двигателями локомотива. Естественных сил сопротивления движению, таких как, трение в подшипниках, аэродинамическое сопротивление, профиль пути для этих целей недостаточно, да и регулировке они не поддаются. Поэтому требуется подконтрольная и изменяемая по величине, в зависимости от решения машиниста искусственная сила сопротивления движению поезда, соизмеримая со значениями кинетической энергии. Такую силу получают в результате нажатия колодки на колесо.

Теперь рассмотрим силовые процессы, происходящие после прижатия колодки к катящемуся колесу (рис 1.2). Нажатие на вращающееся колесо колодки с силой К вызывает появление силы трения Т между колодкой и колесом, которая действует от колодки на колесо против его вращения, т. е. стремится остановить это вращение. Тормозить поступательное движение поезда сила трения Т не может, так как это внутренняя сила по отношению к поезду - колодка является частью самого поезда и движется вместе с ним. Однако под действием внутренней силы Т колесо начинает «цепляться» за рельс в точке контакта О1 Возникает сила сцепления колеса с рельсом В, равная по величине силе Т Сила В стремится утащить рельс за собой (сдвинуть его по ходу движения поезда).

Так как рельс прикреплен к шпалам, то он остается неподвижным (в путевом хозяйстве хорошо известно явление угона рельсов под действием сил сцепления В). Особенно интенсивно угон рельсов происходит в местах, где обычно производится служебное торможение поездов. В свою очередь, неподвижный рельс тормозит катящееся по нему колесо с силой Вт, являющейся реакцией рельса на силу В. Сила Вт является внешней силой по отношению к поезду и направлена против направления его движения, поэтому она является тормозной силой. Тормозная сила выполняет еще одну важную функцию: являясь реакцией рельса на силу Т и направленная по направлению вращения катящегося колеса, она уравновешивает эту силу трения Т, заставляя колесо продолжать вращение, препятствуя переходу колесной пары на юз. Итак, колодки прижимаются к колесам для того, чтобы возникшая сила трения Т вызывала появление равной ей внешней силы Вт, которая, будучи направленной по вращению колеса, препятствует переходу его на юз и в то же время, имея направление против движения поезда, тормозит его.

Чтобы облегчить представление этой картины, достаточно мысленно приподнять тормозимые колесные пары над рельсами, и тогда станет ясно, что колесные пары, потеряв сцепление с рельсами, под действием сил трения Т сразу прекратят вращение, но сам поезд будет продолжать движение вперед. Точно так же торможение самолетов колесами их шасси возможно только после приземления на посадочную полосу.

Фрикционные материалы, применяемые для торможения

Материал колодки может быть различным: чугун, фосфористый чугун, композиция. У каждого материала есть свои положительные и отрицательные качества.

Чугунные тормозные колодки подразделяются на:

Гребневые (с твердыми вставками и из высокофосфористого чугуна). Ис- пользуются с твердыми вставками на локомотивах. Твердые вставки способствуют хорошей очистке поверхности катания колеса от грязи и наварообразных сдвигов металла;

Безгребневые секционные;

Безгребневые секционированные (на электровозах ЧС, ЭП10 и вагонах западно-европейского типа);

Кроме того, безгребневые тормозные колодки бывают двух основных типов: обычные, с низким содержанием фосфора, которые используются на пассажирских поездах; с повышенным содержанием фосфора, которые применяются на электропоездах.

Повышение содержания фосфора резко увеличивает коэффициент трения и износостойкость, но при этом они более хрупкие, и имеют сильное искрение, которое может доходить до кругового огня. Пожароопасна

- чугун - хорошая теплопроводность, невысокая износоустойчивость, коэффициент трения существенно уменьшается с повышением скорости движения

-Композиционные тормозные колодки подразделяются на:

Колодки с металлическим и с сетчато-проволочным каркасом типа ТИИР- 300 (с содержанием асбеста);

Композиционные колодки изготавливают из асбокаучукового материала методом напрессования его на металлический или сетчато-проволочный каркас.

На тыльной стороне колодки выпрессовывают год выпуска и краской наносят штамп номера партии и месяц изготовления.

Химический состав композиционной колодки 8-1-66 (в %): асбест-15; каучук-20; барид-47,5; сажа-15 и вулканизирующий состав (сера и др.) – 2,5.