Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мнайды физикалы жне химиялы асиеттері курсты Ж.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.01 Mб
Скачать

1.5 Бастапқы шикізат туралы мәлімет

Мұнай - көмірсутектер қоспасы болып табылатын, жанатын майлы сұйықтық; қызыл-қоңыр, кейде қара түске жақын, немесе әлсіз жасыл-сары, тіпті түссіз түрі де кездеседі; өзіндік иісі бар; жерде тұнбалық қабатында орналасады; пайдалы қазбалардың ең маңызды түрі.

Негізінен алғанда көмірсутектерінен (85 % -ға дейін) тұратын бұл заттар дербес үйірімдер шоғыры түрінде жекеленеді: метанды, нафтенді және ароматты (хош иісті) тізбектер. Оның құрамында оттегі, азот, күкірт, асфальтты шайыр қосындылары да кездеседі.

Мұнайдың түсі қызғылт, қоңыр қошқыл, кейде ол ашық сарғыш түсті, ақшыл болып та келеді. Мысалы, Әзірбайжанның Сурахана алқабында ақшыл түсті мұнай өндіріледі. Мұнай судан жеңіл, оның меншікті салмағы 0,65-0,95 г/см3. Мұнай өз бойынан электр тогын өткізбейді. Сондықтан ол электроникада изолятор (айырушы) ретінде қолданылады. Осы кезеңде мұнай құрамынан екі мыңнан астам халық шаруашылығына керекті заттар алынып отыр: бензин, керосин, лигроин, парафин, көптеген иіссу түрлері, кремдер, парфюмериялық жұмсақ майлар, дәрі-дәрмектер, пластмасса, машина дөңгелектері тағы басқа. Ол қуатты әрі арзан отын — бір тонна мұнай үш тонна көмірдің, 1,3 тонна антрациттың, 3,3 тонна шымтезектің қызуына тең [8].

Барлық жанғыш қазбалар бес негізгі элементтерден тұрады – көміртек, сутегі, азот, оттегі және күкірт. Дегенмен жанғыш қазбалардағы олардың мөлшері әртүрлі. Элементтік құрамындағы, ал демек, топтық құрамындағы айырмашылық бастапқы өсімдік материалына және мұнайдың түзілу жағдайларына байланысты. Мұнайдың барлық компоненттері тұратын негізгі элементтер – көміртек пен сутегі. Сутегі мөлшері жағынан мұнай жанғыш қазбалар ішінде аралық орынды иемденеді және мына қатарға қарай артады:

Көмір  мұнай  табиғи газ.

Мұнайлардағы көміртек пен сутегі мөлшері анағұрлым тар аралықта тербеледі.

Кесте 5 - Мұнайдың орташа элементтік құрамы

Элемент

Мөлшері, %

Көміртек (С)

85 - 87

Сутегі (Н)

11 – 15

Күкірт (S)

0,1 – 7,0

Оттегі (О)

1 – 2

Азот (N)

 0,5 – 0,6

Барлық дерлік мұнайларда көміртек пен сутегімен қатар күкірт, оттегі және азот кездеседі. Осы элементтер қосындысы кейде 8 – 10% мас асады. Мұнайдағы азот 1,5% мас аспайды. Негізінен ол жоғары молекулалы, конденсацияланған (шайырлы) қосылыстар құрамына енеді. Сонымен қатар, жоғары шайырлы қосылыстар құрамына оттегі (0,1 - 2% мас) мен күкірттің біршама мөлшері енеді. Азот пен оттегіден айырмашылығы күкірттің басым мөлшері парафинді қатардың төмен молекулалы қосылыстарында шоғырланған.

Әртүрлі кен орындарында өндірілген мұнайлардың элементтік құрамы әртүрлі. Тұтасымен көміртек пен сутегіден тұратын мұнайлар (АҚШ-тағы Пенсильвания штаты; Өзбекстан) немесе жоғары күкіртті мұнайлар (Волга-Жайық мұнай-газды облысы, Башқұртстан мен Татарстандағы кен орындардың мұнайлары) бар. Уақытқа қарай мұнайдың элементтік құрамы да өзгереді. Мұнайдың жасы артқан сайын ондағы оттегі, азот және күкірт мөлшері азаяды, көміртек пен сутегі мөлшері артады. Гетероэлементтер-дің ыршып шығуы қарапайым қосылыстар түрінде өтеді – CO2, H2O, H2S, NH3, S, N2.

Жоғарыда аталған элементтерден басқа мұнайларда азғана мөлшерде өте көптеген элементтер, соның ішінде Ca, Mg, Fe, Al, Si, Ge, V, Ni, Na, Bi және басқалар кездеседі. Осы элементтердің мөлшері пайыздың азғана үлестерімен өрнектеледі. Мысалы, мұнай өнімдерінде германий 0,15-0,19 г/т мөлшерде анықталған. Барлығы мұнайларда 50 астам элементтер табылды. Тағы бір айта кететін жайт, ванадий мен никель жер қыртысында микроэлементтер болып табыла отырып, мұнайларда мөлшері жағынан металдар ішінде бірінші орынды иеленеді. Сонымен қатар, ванадий тек күкіртті және шайырлы мұнайларда кездеседі.

Мұнай күрделі көп компонентті жүйені білдіреді. Мұнайдың топтық құрамын білу мұнайдың шығу тегі туралы топшылауға және өндірілген мұнайды мұнай химиясы өндірісі процесінде барынша нәтижелі қолдануға мүмкіндік береді.

Мұнай компоненттерінің негізгі массасы – бұл көмірсутектер. Мұнайда көмірсутектердің үш класы бар: парафинді (алкандар), нафтенді (циклоалканды), ароматты (арендер) және гибридті – парафин-нафтен-ароматты. Айта кететін жайт, яғни бастапқы мұнайларда (нативті) қанықпаған қосылыстар (алкендер) болмайды.

Мұнай құрамына газ тәрізді (С1 – С4), сұйық (С5 – С15) және қатты (С16 – С60) парафиндер енуі мүмкін. Бұл көмірсутектердің құрылысы қалыпты. Тармақталған тізбегі бар парафиндер пайыздық үлесін құрайды және изопреноидты құрылым негізінде тұрғызылған:

- С – С – С -

С

Мұнайдағы метан газ тәрізді күйде болады. Мұнай кен орындарындағы газдардың қысымының жоғарылауы салдарынан метан гомологтары С24 мұнайда ерітінділер күйінде болады. Газ тәрізді алкандар С1 – С4 сумен қоспа қосылыстары деп аталатын қатты комплекстер түзеді.

Мұнайды өндіргенде қысымның төмендеуі салдарынан газдар бөлінеді. Мұндайда бөлінетін газдарды серіктес (ілеспе) газдар деп атайды. Олардың құрамы мұнайдың орналасу жағдайына (температура мен қысым) тәуелді.

Қалыпты жағдайда (Р = 0,1013 МПа және Т = 273 К) парафиндер сұйықтықтар болып табылады және бензиндік (С2- С10) пен керосиндік (С11 – С15) фракциялар құрамына енеді. Олардың басым бөлігінің құрамы қалыпты. Көптеген мұнайларды талдау, яғни молекула неғұрлым тармақталған сайын, соғұрлым мұнайда осы көмірсутек аз болатындығын көрсетті. Көмірсутекті газдардың сумен комплексі сияқты құрылысы қалыпты сұйық алкандар әлсіз тармақталған, гептаннан бастап бөлме температурасында мочевинамен H2N-CO-NH2 қоспа қосылыстарын түзеді.

Изоалкандар тиомочевинамен H2N-C(S)-NH2 қоспа қосылыстарын түзеді. Осы қосылыстарда мочевина мен тиомочевина молекулалары өзара сутекті сутегі байланыстарымен жалғасады да, Ван-дер-Ваальс күштері немесе әлсіз сутекті байланыстармен ұсталынатын алкан молекулалары болатын арналар түзеді. Мочевина тиомочевинаға қарағанда кіші диаметрлі арна түзеді. Осы мочевинамен комплекс түзу арқасында қалыпты алкандарды тармақталғанынан ажыратуға болады.

Сұйық парафиндер отынның октан және цетан саны шамасына әжептеуір әсер етеді.

Көміртек атомдары 16 асатын көмірсутектер қатты заттар болып табылады:

  • құрылысы қалыпты көмірсутектер С16 – С35 – парафиндер;

  • құрылысы изомерлі көмірсутектер  С36 – изопарафиндер немесе церезиндер;

Церезиндер молекулалық массасы мен қайнау температурасының жоғарылығымен ерекшеленеді. Химиялық қасиеттері жағынан церезиндер парафиндерге қарағанда аз инертті. Олар күкірт, азот және хлорсульфонды қышқылдармен оңай әрекеттеседі. Парафиндер, керісінше әртүрлі әрекеті күшті реагенттер мен тотықтырғыштар әсеріне өте тұрақты.

С16 және одан да жоғары парафиндер айдағанда мазутқа кетеді, ал церезиндер гудронда қалады. Мұнайда қатты парафиндер мөлшері көп емес, дегенмен 10% мас жетуі мүмкін. Парафиндер мен церезиндер өнеркәсіптің әртүрлі салаларында әртүрлі техникалық қолданыста болады: электр және радио техникасы, қағаз, сіріңке, химиялық, былғары, парфюмерлік және т.б. Май фракцияларында парафиндердің болуы олардың қату температураларын арттырады және төмен температураларда майлардың қозғалғыштығын кемітеді, сондықтан да майларды парафиннен тазартатын арнайы тазартуға – депарафиндеуге ұшыратады.

Нафтенді (циклоалканды немесе полиметиленді) көмірсутектер геологиялық жасына қарай мұнайларда әрқилы тараған. Орташа есеппен мұнайда 25-75% мас дейін нафтендер болады.

Нафтендер мұнайларда моно-, би- және полициклді қосылыстар түрінде кездеседі. Қарапайым нафтендер – циклопропан, циклобутан және олардың гомологтары мұнайларда байқалмаған. Әсіресе мұнайдың бензиндік және керосиндік фракцияларында метилмен алмасқан циклопентандар мен циклогександар мөлшері жоғары. Полициклді конденсацияланған қосылыс-тар мұнайдың қайнауы жоғары фракцияларында кездеседі.

Нафтенді көмірсутектерді мұнайдың фракцияларына тарату әртүрлі. Әдетте олардың мөлшері фракция ауырлаған сайын артады, және тек қайнауы жоғары май фракцияларында ғана төмендейді. Кейбір мұнайларда нафтендер фракцияларда біртегіс дерлік таралған.

Физикалық қасиеттері жағынан нафтендер парафинді және ароматты көмірсутектер арасында аралық орынды иемденеді. Химиялық қасиеттері жағынан олар парафиндерге ұқсас, мұны олардың молекулалық құрылысымен түсіндіруге болады.

Нафтендер майлы дистилляттардың технологиялық қасиеттеріне жағымды әсер етеді, өйткені жоғары қату температурасына ие және іс жүзінде температураға қатысты тұтқырлығын өзгертпейді.

Арендер (құрамында бір немесе бірнеше соның ішінде конденсацияланған бензол сақиналары бар ароматты көмірсутектер) мұнайда келесі қатарда келтірілген:

  • бензол және оның гомологтары, СnH2n-6;

  • нафталин және оның гомологтары, CnH2n-12;

  • 3, 4 және 5 конденсацияланған ядролардан тұратын күрделі конденсацияланған жүйелер.

  • Нафтенді және ароматты үзіктерден тұратын гибридті немесе аралас көмірсутектер.

Мұнайдың әрбір фракциясына өз ароматты көмірсутектері тән екендігі тәжірибе жүзінде айқындалған. Сонымен бірге, фракциялардың молекулалық массасы артқан сайын құрамындағы арендер мөлшері арта түседі; ароматты көмірсутектер конденсациялана түседі.

Бензиндік фракцияларда бензолдың барлық дерлік гомологтары кездеседі. Сонымен бірге, молекула көміртекпен қаныққан сайын, соғұрлым ол тармақталған, соғұрлым фракциядағы оның мөлшері көбірек.

Бензиндік фракциялардағы бензол гомологтарының қатынасы:

С6 : С7 : С8 : С9 = 1 : 3 : 7 : 8.

Бензиндік фракцияда қарапайым гибридті немесе аралас көмірсутек – индан бар.

Керосиндік фракцияларда ароматты көмірсутектер сол бензол гомологтары түрінде кездеседі, бірақ оларға қарағанда көмірсутекті тізбектері ұзындау. Сонымен қатар, нафталин гомологтарының әжептеуір мөлшері де болады. Тағы гибридті көмірсутектер – тетралин мен оның гомологтары бар.

Ауырлау – керосин-газойлді және майлы фракцияларда – ароматты көмірсутектер өзімен консднацияланған және нафталин гомологтары түрінде берілген. Сонымен қатар, фракциядағы көмірсутектердің қайнау температурасы жоғары болған сайын, соғұрлым молекула сақинасымен қаныққан, ал нафталин гомологтарының мөлшері кеми түседі.

Тазартылған тауарлық майларда алкан-нафтен типтес гибридті көмірсутектер ұзын алкилді тізбегі бар моно- және бициклді цикландар түрінде кездеседі (50-70% мас.дейін).

Мұнайдан бөлінген арендерді органикалық және мұнайхимиясы синтезінде (бензол, толуол, этилбензол, ксилолдар, нафталин) бағалы шикі зат ретінде, мотор майларына үстеме ретінде қолдануға болады. Ал дизель отынына пайдалану тиімсіз, себебі оның жану процесін төмендетеді.

Детонациялық тұрақтылығы. Детонациялық тұрақтылық дегеніміз детонациясыз мәжбүрлі тұтандыру, яғни жарылыссыз қозғалтқыш цилиндрінде отынның жану қабілеті. Бензинге енетін көмірсутектер пероксидтер түзе жанады, олар жарыла ыдырайды. Детанация құбылысы – цилиндрде отын-ауалы қоспаның (ОАҚ) аномалді жану салдары.

Цилиндрдегі жалын алаңы тұтану нүктесінен жан-жаққа бірдей шашамен 20-50 м/с тарағандағы жану қалыпты деп саналады.

Детонациялық жану отынның химиялық құрамымен, яғни оның пероксидтер түзу қабілетімен анықталады.

Ең детонациялық тұрақты ароматты көмірсутектер болып табылады, сонымен бірге бүйірлік алкилді тізбектер ұзарған сайын олардағы детонациялық тұрақтылық төмендейді. Оларға изоаолкандар жақын, олар неғұрлым тармақталған сайын осы тұрақтылығы жоғары болады.

Нафтенді көмірсутектер аралық орынды иемденеді. Олефиндер нафтендерге жақын.

Қос байланыс тізбек ұшына жақын орналасқан сайын, детонациялық тұрақтылығы жоғары болады.

Отындардың детонациялық тұрақтылығының шамасы шартты қабылданған бағана бойынша октан саны (ОС) болып табылады. Осы бағанада 100 деп изооктанның (2,2,4-триметилпентан) С8Н18, ал 0 деп н-гептанның С7Н16 детонациялық тұрақтылығы қабылданған [7].

Автомобиль бензиндерінің детонациялық тұрақтылығын анықтаудың үш әдісі бар.

Октан санын анықтаудың зерттеулік әдісі (МЕМСТ 8226-82) сынаққа түсетін бензиннің детонациялық тұрақтылығын құрамындағы изооктанның гептанмен қатынасын іріктеп эталонды қоспаның детонациялық тұрақтылығымен салыстыруды білдіреді. Салыстыра сынауды сығылу дәрежесін өзгертуге мүмкіндік беретін, ал детонация баста-луын электронды қосқышпен белгілейтін стандартты бір цилиндрлі УИТ-65 қондырғы-сында жүргізеді. Сынақты тұтануды басып озудың тұрақты бұрышы 13 болғандағы қозғалтқыш білігінің айналу жиілігі 6006 айн/мин, карбюраторға түсетін ауа температу-расы 521С жағдайында өткізеді. Зерттеу әдісімен алынған октан саны (ОСз) қозғалтқыш жұмысының анағұрлым оңтайлы жағдайына сәйкес келеді.

Октан санын анықтаудың моторлық әдісін (МЕMСТ 511-82) де УИТ-65 қондырғы-сында жүргізеді және бензиннің детонациялық тұрақтылығын құрамы сынақ барысында іріктелетін эталонды қоспамен салыстырып анықтайды; ондағы изооктан мөлшеріне қарай ізделіп жатқан октан санын табады. Дегенмен бұл жағдайда сынақ шарты қатаң: тұтануды басып озудың тұрақты бұрышы 26-дан 15 дейін, қозғалтқыш білігінің айналу жиілігі 9009 айн/мин, карбюраторға кірердегі ауа температурасы 505С, цилиндерге енердегі ОАҚ температурасы 1491С.

Мұнай сапасының маңызды көрсеткіші фракциялық құрамы болып табылады. Оны біртіндеп буландыру әдісін қолданып зертханада айдау арқылы анықтайды. Анықтау барысында біртіндеп көтерілетін температурада мұнайдан бір-бірінен қайнау шегімен ерекшеленетін бөліктер – фракциялар айдалады. Әрбір фракция қайнаудың басталу және аяқталу температураларымен сипатталады.

Мұндай әдіспен алынған октан санының мәні (ОСм) жүктемесі жоғары қозғалтқыш жұмысына сәйкес келеді және үнемі ОСз-тен төмен. ОСз – ОСм айырмасын бензиннің сезімталдығы деп атайды. Бензиндердің химиялық құрамына қарай ол 1-2-ден 8-12 дейінді құрайды.

Қабырғалық және жол жағдайында толық өлшемді сериялы қозғалтқыштарды детонациялық сынау әдісі (МЕМСТ 10373-75) басқа әдістерге қарағанда күрделірек, көп еңбек әрі эталонды қоспа шығынын талап етеді.

Бұл әдіс нәтижелері бойынша қозғалтқыштың маңызды параметрлері – тұтануды басып озу, біліктің айналу жиілігі, қозғалтқыш қуатына қатысты тәуелділік қисықтарын тұрғызады.

Тура айдалған бензиндер үшін мынадай формула ұсынылады:

ОСм = 250,9 - 281 (1.17)

Мұндағы - бензиннің салыстырмалы тығыздығы.

Қайнаудың аяқталуы 200С дейінгі осындай тура айдалған бензиндер үшін:

ОСм = 100А + 70Н + 50ИП – 12НП (1.18)

мұндағы А, Н, ИП, НП – бензиндегі ароматты, нафтенді, изопарафинді, н-парафинді көмірсутектердің массалық үлесі.