- •Домашнее задание:
- •Практические работы
- •Практическая работа
- •Домашнее задание
- •Домашнее задание:
- •Практические работы:
- •Вопросы для подготовки:
- •Домашнее задание:
- •Итоговая оценка___________________
- •Вопросы для подготовки:
- •Домашнее задание
- •Практические работы
- •1. Установочные (выпрямительные) рефлексы.
- •2. Наблюдения статокинетических рефлексов (Рис. 6).
- •Статокинетические нистагмные рефлексы.
- •Рекомендации по использованию материала смежных дисциплин: домашнее задание
- •Практические работы
- •Вопросы для подготовки
- •Домашнее задание
- •Практические работы Работа №1 Определение слепого пятна
- •Работа №2 Аккомодация глаза
- •Работа №4 Зрачковый рефлекс
- •Работа №5 Определение цветоощущения по таблицам Рабкина
- •Работа №7 Бинокулярное зрение.
- •Работа № 8Определение остроты слуха.
- •Работа № 4Эстезиометрия кожи и слизистой оболочки полости рта.
- •Вопросы для подготовки:
- •Домашнее задание
- •Домашнее задание
- •Домашнее задание
- •Домашнее задание
- •Практические работы
- •Вопросы для подготовки
- •Домашнее задание:
- •Практические работы
- •Полученные результаты:
- •Вопросы для подготовки
- •Практические работы
- •Вопросы для подготовки:
- •Домашнее задание
- •Практические работы
- •Вопросы для подготовки
- •Домашнее задание:
- •Домашнее задание
- •Практические работы
- •Пневмограмма
- •Домашнее задание
- •Вопросы для подготовки:
- •Домашнее задание:
- •Практические работы
- •Домашнее задание:
- •Практические работы
- •Домашнее задание
ФГБОУ ВО «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙУНИВЕРСИТЕТ» МИНЗРАВА РФ
Кафедра нормальной физиологии
РАБОЧАЯ ТЕТРАДЬ ДЛЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ ПО НОРМАЛЬНОЙ ФИЗИОЛОГИИ ДЛЯ СТУДЕНТОВ ВСО
МОДУЛЬ 1 ОБЩАЯ ФИЗИОЛОГИЯ
ФИО студента______________________________
Группа_____________________________________
Оренбург 2017
ЗАНЯТИЕ №1: Биоэнергетика и метаболизм клетки.
Цель:
Ознакомить студентов с организацией учебного процесса на кафедре
Сформировать представление о предмете и основных понятиях физиологии клетки как основе для понимания процессов жизнедеятельности, протекающих в целостном организме.
Вопросы для подготовки
Предмет исследования и основные методы исследования в физиологии клетки.
Физиология клетки как основа для понимания процессов жизнедеятельности организма в целом.
Основные понятия физиологии: гомеостаз, клеточный гомеостаз, физиологическая функция, физиологическая реакция. Системный принцип организации жизнедеятельности организма, Клеточный и субклеточный уровень организации функций.
Морфофункциональная характеристика животной клетки. Строение и роль различных органелл в осуществлении клеточных функций.
Строение свойства и функции цитоплазматической мембраны.
Энергетические процессы в клетке с позиции классической термодинамики.Понятие свободной энергии и энтропийных процессов, сопровождающих жизнедеятельность.Устойчивое термодинамическое неравновесие.
Основные пути превращения энергии в клетке. Понятие об ассимиляции и диссимиляции. Ферменты и скорость реакций. Роль АТФ.
Клеточный метаболизм. Пластическая и энергетическая функции питательных веществ. Энергетическая и физиологическая ценность белков, жиров и углеводов для жизнедеятельности клеток.
Домашнее задание:
Схематично изобразить структуру клетки и указать основные ее элементы.
Дайте краткую функциональную характеристику органеллам клетки.
Органелла — это крошечная клеточная структура, которая выполняет определенные функции внутри клетки. Органеллы встроены в цитоплазму эукариотических и прокариотических клеток. В более сложных эукариотических клетках органеллы часто окружены собственной мембраной. Подобно внутренним органам тела, органеллы специализированы и выполняют конкретные функции, необходимые для нормальной работы клеток. Они имеют широкий круг обязанностей: от генерирования энергии до контроля роста и размножения клеток.
Изобразите микроструктуру цитоплазматической мембраны и укажите ее основные элементы.
Дайте определение понятию: гомеостаз
Гомеостаз – это саморегулирующийся процесс, в котором все биологические системы стремятся сохранить стабильность в период адаптации к определенным условиям, оптимальным для выживания. Любая система, находясь в динамическом равновесии, стремится к достижению устойчивого состояния, которое сопротивляется внешним факторам и раздражителям.
Дайте определение понятию физиологическая функция
Физиологические функции — это проявления специфической деятельности клеток, тканей, органов и систем организма, направленные на приспособление его к условиям внешней среды.
Одной из основных физиологических функций является обмен веществ и энергии как одно из главных, необходимых условий жизни животного. Обмен веществ включает в себя два взаимосвязанных, одновременно протекающих, но противоположных процесса — ассимиляции и диссимиляции.
Дайте определение понятию физиологическая реакция
Физиологические реакции организма- являясь самостоятельной единицей живой материи, организм отвечает на внешние и внутренние воздействия как единое целое. Следовательно, он может рассматриваться как целостная саморегулирующаяся система. Способность к саморегуляции – одно из основных свойств организма, которое позволяет осуществлять адаптивные реакции при сохранении динамического постоянства его внутренней среды.
Дайте определение понятиям: ассимиляция и диссимиляция.
Ассимиляция (анаболизм) — это процесс синтеза, создания новой живой материи, образование сложных, специфических для данного животного соединений из более простых.
Диссимиляция (катаболизм) — это изнашивание, разрушение, распад живой материи, в результате чего сложные химические вещества превращаются в более простые.
Дайте определение обмена веществ и энергии
Обмен веществ и энергии, или метаболизм,— совокупность химических и физических превращений веществ и энергии, происходящих в живом организме и обеспечивающих его жизнедеятельность. Обмен веществ и энергии составляет единое целое и подчиняется закону сохранения материи и энергии.
Укажите физиологическую роль белков, жиров и углеводов.
Белки, жиры, углеводы, витамины — основные пищевые вещества в рационе человека. Пищевыми веществами называют такие химические соединения или отдельные элементы, которые необходимы организму для его биологического развития, для нормального протекания всех жизненно важных процессов.
Белки — это высокомолекулярные азотистые соединения, основная и обязательная часть всех организмов. Белковые вещества участвуют во всех жизненно важных процессах. Например, обмен веществ обеспечивается ферментами, по своей природе относящимися к белкам. Белками являются и сократительные структуры, необходимые для выполнения сократительной функции мышц — актомиозин; опорные ткани организма — коллаген костей, хрящей, сухожилий; покровные ткани организма — кожа, ногти, волосы. Жиры состоят из нейтрального жира — триглицеридов жирных кислот (олеиновой, пальмитиновой, стеариновой и др.) и жироподобных веществ — липоидов. Главная роль жиров заключается в доставке энергии. При окислении 1 г жира в организме человек получает в 2,2 раза больше энергии (2,3 ккал), чем при окислении углеводов и белков.
Жиры выполняют и пластическую функцию, являясь структурным элементом протоплазмы клеток. В жирах находятся необходимые для жизни жирорастворимые витамины A, D, Е, К. Углеводы — это обширный, наиболее распространенный на Земле класс органических соединений, входящих в состав всех организмов. Углеводы и их производные служат структурным и пластическим материалом поставщика энергии и регулируют ряд биохимических процессов. По классификации ВОЗ углеводы делятся на усвояемые организмом человека и неусвояемые. Неусвояемые углеводы образуют группу так называемых балластных веществ — пищевые волокна, играющие огромную роль в поддержании нормальной регуляции пищеварения. Средняя величина теплоты при сгорании углеводов — 4,1 ккал/г. Взаимодействуя с другими веществами пищи, углеводы влияют на доступность их организму и на потребность организма в этих веществах, например белоксберегающее действие углеводов. Углеводы снижают потребность организма человека в белках, препятствуя использованию аминокислот в качестве энергетического материала и усиливая посредством инсулина использование аминокислот для синтеза белка
Укажите процессы в клетках организма, требующие затрат энергии АТФ
Строение АТФ и биологическая роль его молекул тесно связаны. Вещество играет ключевую роль в процессах жизнедеятельности, ведь в макроэргических связях между фосфатными остатками содержится огромное количество энергии. Аденозинтрифосфат выполняет множество функций в клетке, и поэтому важно поддерживать постоянную концентрацию вещества. Распад и синтез идут с большой скоростью, т. к. энергия связей постоянно используется в биохимических реакциях. Это незаменимое вещество любой клетки организма. Вот, пожалуй, и все, что можно сказать о том, какое строение имеет АТФ.
АТФ расшифровывается как аденозинтрифосфат, или аденозинтрифосфорная кислота. Вещество является одним из двух наиболее важных источников энергии в любой клетке. Строение АТФ и биологическая роль тесно связаны. Большинство биохимических реакций может протекать только при участии молекул вещества, особенно это касается пластического обмена. Однако АТФ редко непосредственно участвует в реакции: для протекания любого процесса нужна энергия, заключенная именно в химических связях аденозинтрифосфата
Также АТФ необходим для работы ионных каналов. Например, Na-K канал выкачивает 3 молекулы натрия из клетки и вкачивает 2 молекулы калия в клетку. Такой ток ионов нужен для поддержания положительного заряда на наружной поверхности мембраны, и только с помощью аденозинтрифосфата канал может функционировать. То же касается протонных и кальциевых каналов. АТФ является предшественником вторичного мессенжера цАМФ (циклический аденозинмонофосфат) - цАМФ не только передает сигнал, полученный рецепторами мембраны клетки, но и является аллостерическим эффектором. Аллостерические эффекторы – это вещества, которые ускоряют или замедляют ферментативные реакции. Так, циклический аденозинтрифосфат ингибирует синтез фермента, который катализирует расщепление лактозы в клетках бактерии. Сама молекула аденозинтрифосфата также может быть аллостерическим эффектором. Причем в подобных процессах антагонистом АТФ выступает АДФ: если трифосфат ускоряет реакцию, то дифосфат затормаживает, и наоборот
ЗАНЯТИЕ №2: Транспортные системы клетки.
Вопросы для подготовки
Обмен веществами между клеткой и окружающей средой. Диффузия. Закон диффузии Фика.Диффузия через мембранные поры.Диффузионное равновесие ионов. Равновесный потенциал, уравнения Нернста.
Активный транспорт. Na/K–насос и его электрогенность.Механизм формирования мембранного потенциала (МП), величина. МП как основа возбудимости.
Облегченная диффузия.
Активный транспорт и облегченная диффузия. Активный транспорт ионов. Первичная и вторичная системы активного транспорта в клетке.Концентрационный градиент Na+ как движущая сила мембранного транспорта
Эндо– и экзоцитоз, их значение.
Перенос веществ внутри клетки.Диффузия. Активный транспорт в мембранах органелл.Транспорт в везикулах
Домашнее задание:
Дайте определение понятию мембранный потенциал покоя (МПП)
Мембранным потенциалом покоя (МПП) или потенциалом покоя (ПП) называют разность потенциалов покоящейся клетки между внутренней и наружной сторонами мембраны. Внутренняя сторона мембраны клетки заряжена отрицательно по отношению к наружной. Принимая потенциал наружного раствора за нуль, МПП записывают со знаком «минус». Величина МПП зависит от вида ткани и варьирует от -9 до -100 мв. Следовательно, в состоянии покоя клеточная мембрана поляризована. Уменьшение величины МПП называют деполяризацией, увеличение — гиперполяризацией, восстановление исходного значения МПП — реполяризацией мембраны.
Перечислите и охарактеризуйте механизмы формирования мембранного потенциала покоя.
Формирование потенциала покоя
ПП формируется в два этапа.
Первый этап: создание незначительной (-10 мВ) отрицательности внутри клетки за счёт обмена Na+ на K+ в соотношении 3 : 2 (на каждые 3 иона натрия, выведенные наружу, приходится 2 иона калия, вобранные внутрь). Таким образом, клетка теряет больше положительного заряда, чем приобретает, и в результате заряжается отрицательно. Обмен ионов осуществляет натрий-калиевый насос с затратой энергии АТФ.
Результаты деятельности мембранных ионных насосов-обменников на первом этапе формирования ПП таковы:
1. Дефицит ионов натрия (Na+) в клетке.
2. Избыток ионов калия (K+) в клетке.
3. Появление на мембране слабого электрического потенциала (-10 мВ).
Второй этап: создание значительной (-60 мВ) отрицательности внутри клетки за счёт утечки из неё через мембрану ионов K+. Ионы калия K+ покидают клетку и уносят с собой из неё положительные заряды, доводя отрицательность до −70 мВ.
Итак, мембранный потенциал покоя — это дефицит положительных зарядов внутри клетки, возникающий за счёт работы натрий-калиевого насоса и (в большей мере) последующей утечки из клетки положительных ионов калия.
Дайте определения понятиям облегченная и простая диффузия.
Простая диффузия .По пути простой диффузии частицы вещества перемещаются сквозь билипидный слой. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O2, N2, бензол) и полярные маленькие молекулы (CO2, H2O, мочевина). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).
Простая диффузия представляет собой процесс, при котором газ или растворенные вещества распространяются и заполняют весь объём вещества. Молекулы или ионы, растворённые в жидкости, находясь в хаотичном состоянии, сталкиваются со стенками клеточной мембраны, что может вызвать двоякий исход: молекула либо отскочит, либо пройдёт через мембрану. Если вероятность последнего велика, то говорят, что мембрана проницаема для данного вещества.
Если концентрация данного вещества по обе стороны мембраны различна, то возникает процесс, который способствует выравниванию концентрации. Через клеточную мембрану проходят как хорошо растворимые (гидрофильные), так и нерастворимые (гидрофобные) вещества. В случае, когда мембрана плохо проницаема, либо непроницаема для данного вещества, она подвергается действию осмотических сил. При более низкой концентрации вещества в клетке она сжимается, при более высокой концентрации — впускает внутрь воду.
Облегченная диффузия Большинство веществ переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков). Все транспортные белки образуют непрерывный белковый проход через мембрану. С помощью белков-переносчиков осуществляется как пассивный, так и активный транспорт веществ. Полярные вещества (аминокислоты, моносахариды), заряженные частицы (ионы) проходят через мембраны с помощью облегчённой диффузии при участии белков-каналов или белков-переносчиков. Участие белков-переносчиков обеспечивает более высокую скорость облегчённой диффузии по сравнению с простой пассивной диффузией. Скорость облегчённой диффузии зависит от ряда причин: от трансмембранного концентрационного градиента переносимого вещества, от количества переносчика, который связывается с переносимым веществом, от скорости связывания вещества переносчиком на одной поверхности мембраны (например, на наружной), от скорости конформационных изменений в молекуле переносчика, в результате которых вещество переносится через мембрану и высвобождается на другой стороне мембраны. Облегчённая диффузия не требует специальных энергетических затрат за счёт гидролиза АТФ. Эта особенность отличает облегчённую диффузию от активного трансмембранного транспорта.
Через биологические мембраны путём простой диффузии проникают многие вещества. Однако вещества, которые имеют высокую полярность и органическую природу, не могут проникать через мембрану путём простой диффузии, эти вещества попадают в клетку путём облегчённой диффузии. Облегчённой диффузией называется диффузия вещества по градиенту его концентрации, которая осуществляется с помощью специальных белков-переносчиков.
Характерными чертами этого вида транспорта являются:
Высокая скорость переноса веществ.
Зависимость от строения веществ.
Насыщаемость.
Конкуренция и чувствительность к специальным веществам — ингибиторам.
Все перечисленные выше черты являются результатом действий специальных белков-переносчиков, а также их малого содержания в клетке. При достижении максимального числа переносимых веществ, когда все переносчики заняты, дальнейшее увеличение не приведёт к возрастанию количества переносимых веществ — явление насыщения. Вещества, которые постоянно переносятся одним и тем же переносчиком, будут конкурировать за него — явление конкуренции.
Существует несколько видов транспорта. Унитранспорт — когда молекулы или ионы переносятся через мембрану несмотря на другие вещества. Симпорт — перенос веществ направлен с другими соединениями. Антипорт — транспорт вещества направлен противоположно другому веществу или иону (натрий-калиевый насос).
Дайте определения понятию активный транспорт
Активный транспорт — перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный активный транспорт) или через слой клеток (трансцеллюлярный активный транспорт), протекающий из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии для осуществления активного транспорта служит энергия макроэргических связей АТФ.
Дайте определения понятиям осмос, осмотическое давление.
Осмос – это процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества из объёма с меньшей концентрацией растворенного вещества.
Более широкое толкование явления осмоса основано на применении Принципа Ле Шателье — Брауна: если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация, внешнее электромагнитное поле), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.
Осмотическое давление — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану (осмос). Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.
Мера градиента осмотического давления, то есть различия водного потенциала двух растворов, разделённых полупроницаемой мембраной, называется тоничностью. Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим, имеющий более низкое — гипотоническим.
Взаимодействие эритроцитов с растворами в зависимости от их осмотического давления.
Если же подобный раствор находится в замкнутом пространстве, например, в клетке крови, то осмотическое давление может привести к разрыву клеточной мембраны. Именно по этой причине лекарства, предназначенные для введения в кровь, растворяют в изотоническом растворе, содержащем столько хлорида натрия (поваренной соли), сколько нужно, чтобы уравновесить создаваемое клеточной жидкостью осмотическое давление. Если бы вводимые лекарственные препараты были изготовлены на воде или очень сильно разбавленном (гипотоническом по отношению к цитоплазме) растворе, осмотическое давление, заставляя воду проникать в клетки крови, приводило бы к их разрыву. Если же ввести в кровь слишком концентрированный раствор хлорида натрия (3—10 %, гипертонические растворы), то вода из клеток будет выходить наружу, и они сожмутся. В случае растительных клеток происходит отрыв протопласта от клеточной оболочки, что называется плазмолизом. Обратный же процесс, происходящий при помещении сжавшихся клеток в более разбавленный раствор, — соответственно, деплазмолизом.
Дайте определения понятиям эндо- и экзоцитоз.
Эндоцито́з — процесс захвата внешнего материала клеткой, осуществляемый путём образования мембранных везикул. В результате эндоцитоза клетка получает для своей жизнедеятельности гидрофильный материал, который иначе не проникает через липидный бислой клеточной мембраны. Различают фагоцитоз, пиноцитоз и рецептор-опосредованный эндоцитоз. Термин был предложен в 1963 году бельгийским цитологом Кристианом де Дювом для описания множества процессов интернализации, развившихся в клетке млекопитаю
Экзоцитоз — у эукариот клеточный процесс, при котором внутриклеточные везикулы (мембранные пузырьки) сливаются с внешней клеточной мембраной. При экзоцитозе содержимое секреторных везикул (экзоцитозных пузырьков) выделяется наружу, а их мембрана сливается с клеточной мембраной. Практически все макромолекулярные соединения (белки, пептидные гормоны и др.) выделяются из клетки этим способом.
ЗАНЯТИЕ №3:Общая физиология возбудимых клеток.
Вопросы для подготовки
Раздражимость как фундаментальное свойство живых систем. Раздражители - понятие, виды, характеристика. Законы силы, времени и градиента.
Возбудимость, меры возбудимости, кривая силы времени, электрофизиологические критерии возбудимости. Значение возбудимости. Относительное постоянство и колебания уровня возбудимости в тканях.
Возбуждение, определение понятия, условия возникновения. ПД – определение, свойства и значение, фазы, движение ионов в каждую из фаз.
Динамика возбудимости при возбуждении. Рефрактерность, понятие, механизм возникновения.
Динамика биоэлектрического ответа в зависимости от силы действующего раздражителя (локальный ответ, ПД). Сравнительная характеристика свойств ПД и локального ответа, явление суммации.
Ритмическое возбуждение. Лабильность, определение понятия. Мера лабильности. Взаимосвязь между динамикой фаз ПД и лабильностью.
Реакция возбудимых тканей на действие раздражителей с разной частотой. Понятие об оптимуме и пессимуме частоты действующего раздражителя.
Домашнее задание:
Перечислить возбудимые ткани, указать их общие свойства
Основным свойством любой ткани является раздражимость, т. е. способность ткани изменять свои физиологические свойства и проявлять функциональные отправления в ответ на действие раздражителей.
Раздражители – это факторы внешней или внутренней среды, действующие на возбудимые структуры.
Различают две группы раздражителей:
1) естественные (нервные импульсы, возникающие в нервных клетках и различных рецепторах);
2) искусственные: физические (механические – удар, укол; температурные – тепло, холод; электрический ток – переменный или постоянный), химические (кислоты, основания, эфиры и т. п.), физико-химические (осмотические – кристаллик хлорида натрия).
Классификация раздражителей по биологическому принципу:
1) адекватные, которые при минимальных энергетических затратах вызывают возбуждение ткани в естественных условиях существования организма;
2) неадекватные, которые вызывают в тканях возбуждение при достаточной силе и продолжительном воздействии.
К общим физиологическим свойствам тканей относятся:
1) возбудимость – способность живой ткани отвечать на действие достаточно сильного, быстрого и длительно действующего раздражителя изменением физиологических свойств и возникновением процесса возбуждения.
Мерой возбудимости является порог раздражения. Порог раздражения – это та минимальная сила раздражителя, которая впервые вызывает видимые ответные реакции. Так как порог раздражения характеризует и возбудимость, он может быть назван и порогом возбудимости. Раздражение меньшей интенсивности, не вызывающее ответные реакции, называют подпороговым;
2) проводимость – способность ткани передавать возникшее возбуждение за счет электрического сигнала от места раздражения по длине возбудимой ткани;
3) рефрактерность – временное снижение возбудимости одновременно с возникшим в ткани возбуждением. Рефрактерность бывает абсолютной (нет ответа ни на какой раздражитель) и относительной (возбудимость восстанавливается, и ткань отвечает на подпороговый или сверхпороговый раздражитель);
4) лабильность – способность возбудимой ткани реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом волн возбуждения, возникающих в ткани в единицу времени (1 с) в точном соответствии с ритмом наносимых раздражений без явления трансформации.
Дайте определение понятию потенциал действия
Потенциа́л де́йствия — волна возбуждения, перемещающаяся по мембране живой клетки в виде кратковременного изменения мембранного потенциала на небольшом участке возбудимой клетки (нейрона или кардиомиоцита), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к внутренней поверхности мембраны, в то время, как в покое она заряжена положительно. Потенциал действия является физиологической основой нервного импульса.
Благодаря работе «натрий-калиевого насоса» концентрация ионов натрия в цитоплазме клетки очень мала по сравнению с окружающей средой. При проведении потенциала действия открываются потенциал-зависимые натриевые каналы и положительно заряженные ионы натрия поступают в цитоплазму по градиенту концентрации, пока он не будет уравновешен положительным электрическим зарядом. Вслед за этим потенциал-зависимые каналы инактивируются и отрицательный потенциал покоя восстанавливается за счёт диффузии из клетки положительно заряженных ионов калия, концентрация которых в окружающей среде также значительно ниже внутриклеточной.
Дайте определение понятию возбудимость
Возбужде́ние в физиологии — ответ ткани на раздражение, проявляющийся помимо неспецифических реакций (генерация потенциала действия, метаболические изменения) в выполнении специфической для этой ткани функции; возбудимыми являются нервная (проведение возбуждения) и мышечная (сокращение) ткани. Нередко к возбудимым относят и «железистую ткань», однако это не правомерно, поскольку «железистой ткани» нет[источник не указан 731 день] — имеются различные железы и железистый эпителий. Возбудимость — свойство клеток отвечать на раздражение возбуждением.
При возбуждении живая система переходит из состояния относительного физиологического покоя к состоянию физиологической активности. В основе возбуждения лежат сложные физико-химические процессы. Мерой возбуждения является сила раздражителя, которая вызывает возбуждение.
Дайте определение понятию рефрактерность
В электрофизиологии рефрактерным периодом (периодом рефрактерности) называют[1] период времени после возникновения на возбудимой мембране потенциала действия, в ходе которого возбудимость мембраны снижается, а затем постепенно восстанавливается до исходного уровня.
Абсолютный рефрактерный период — интервал, в течение которого возбудимая ткань не способна генерировать повторный потенциал действия (ПД), каким бы сильным ни был инициирующий стимул.
Относительный рефрактерный период — интервал, в течение которого возбудимая ткань постепенно восстанавливает способность формировать потенциал действия. В ходе относительного рефрактерного периода стимул, более сильный, чем тот, который вызвал первый ПД, может привести к формированию повторного ПД.
Изобразите графики потенциала действия (ПД) нейрона, указать фазы процессов, ход ионов в каждую фазу ПД и синхронные изменения проницаемости мембраны для Na+ и K+.
V |
|
|
|
|
|
|
|
|
|
0 |
|||||||||
|
|
|
|
|
|
|
|
t(мс) |
|
|
|||||||||
|
|||||||||
|
|||||||||
КУД |
|
|
|
|
|
|
|
|
|
МП |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
Дайте определение понятию лабильность
Лаби́льность в физиологии — функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях. Понятие «лабильность» введено русским физиологом Н. Е. Введенским (1886), который считал мерой лабильности наибольшую частоту раздражения ткани, воспроизводимую ею без преобразования ритма. Лабильность отражает время, в течение которого ткань восстанавливает работоспособность после очередного цикла возбуждения. Наибольшей лабильностью отличаются отростки нервных клеток — аксоны, способные воспроизводить до 500—1000 импульсов в 1 с; менее лабильны центральные и периферические места контакта — синапсы (например, двигательное нервное окончание может передать на скелетную мышцу не более 100—150 возбуждений в 1 с). Угнетение жизнедеятельности тканей и клеток (например, холодом, наркотиками) уменьшает лабильность, так как при этом замедляются процессы восстановления и удлиняется рефрактерный период. Лабильность — величина непостоянная. Так, в сердце под влиянием частых раздражений рефракторный период укорачивается, а следовательно, возрастает лабильность. Это явление лежит в основе т. н. усвоения ритма. Учение о лабильности важно для понимания механизмов нервной деятельности, работы нервных центров и анализаторов как в норме, так и при различных болезненных отклонениях.

(мВ)