- •Подземные воды
- •Инженерно-геологическая типизация месторождений твердых полезных ископаемых
- •Инженерно-геологических условия месторождений полезных ископаемых.
- •3.3.1. Горные породы
- •Основные задачи инженерной геологии
- •Системный к инженерно-геологическим исследованиям при разведке месторождений полезных ископаемых.
Подземные воды
Подземные воды оказывают влияние на условия формирования I и изменения свойств горных пород, на естественное напряженное состояние и на его изменение вокруг горных сооружений, на возникновение и развитие естественных и вызванных горными работами геологических процессов, а также определяют степень обводненности месторождений. Изучение подземных вод и их влияния на условия освоения месторождений дает возможность прогнозировать водопритоки к горным выработкам и проектировать мероприятия по дренированию и охране вод. Необходимо, отметить, что во время освоения месторождений происходят значительные, не всегда оправданные изменения режима подземных вод. Поэтому детальное изучение подземных вод должно соответствовать современным запросам рационального использования и охраны водных ресурсов.
Исследуя распространение подземных вод, их залегание, дренирование, питание и движение, нельзя обойтись без изучения поверхностных и атмосферных вод, так как между всеми водами существуют определенные закономерные связи. Поэтому следует оценивать общее влияние природных вод на инженерно-геологические условия месторождения. Круг вопросов, подлежащих изучению при исследовании подземных вод, весьма широкий; решение этих вопросов требует применения специальными методов и аппаратуры, которые разрабатываются в гидрогеологии.
Газоносность месторождений имеет большое значение для ведении горных работ. Газы обычно заполняют породы и трещины, находятся в сорбированом состоянии, а также присутствуют в подземных водах.
Д ля оценки влияния вод на условия ведения горных работ, на устойчивость сооружений, а также для разработки мероприятий по ограничению этого влияния большое значение имеет имеют характер и степень обводненности месторождений. О степени (м3/ч) и коэффициенту водообильнности, представляющему собой отношение количества откачиваемой из горной выработки за определенный период времени (год).
Условия обводнения зависят от целого ряда природных факторов, но на них сказываются и некоторые техногенные особенности разведки, вскрытия и эксплуатации месторождения: тампонирование скважин, затопленные старые шахты, система ведения работ н др. Основными природными факторами обводнения месторождений твердых полезных ископаемых следует считать: атмосферные осадки, орогидрографию местности, водопроницаемость вмещающих и покрывающих пород, их тектоническую нарушенность, глубину залегания полезного ископаемого.
Водопроницаемость перекрывающих пород и рельеф местности оказывают существенное влияние на изменение интенсивности инфильтрации в периоды сильных дождей и весеннего снеготаяния. Так, под балками, оврагами и другими понижениями рельефа с маломощными покровами глинистых отложений приток воды в эти периоды увеличивается на 20—40 %, а ино1да в 2— 3 раза по сравнению со среднегодовым. Под относительно ровной земной поверхностью и при наличии более мощных толщ глинистых пород рост водопритока весной составляет всего 10— 15% от среднегодового.
Рельеф земной поверхности определяет на многих месторождениях характер и интенсивность разгрузки водоносных горизонтов, что в конечном итоге сказывается на степени обводненности. Так, для некоторых подземных выработок на водораздельных участках, где подземные воды дренируются местной гидрографической сетью водопритоки в 10 раз меньше, чем для участков с более низкими притоками. Особенно резко увеличивается водоприток в горные выработки при прохождении их в непосредственной близости с поверхностными водоемами. Это увеличение связано с более высокой водообильностью месторождения, формирующейся за счет питания водоносных горизонтов поверхностными водами. Естественно, ] что интенсивность питания зависит от литологического состава аллювиальных отложений и от обнаженности коренных пород.
Необходимо отметить, что резкое усиление водопритоков может произойти при подработке водного объекта, так как при этом может образоваться непосредственная гидравлическая связь между водоемом и подземной выработкой. Поэтому горные работы в непосредственной близости от рек и других поверхностных водоемов (а также под мощными грунтовыми водоносными горизонтами) ведутся в соответствии со специальными правилами, указаниями и техническими условиями.
Глубина залегания полезного ископаемого (горных выработок) оказывает определенное влияние на характерно и величину обводненности горных выработок. Во многом это связано с уменьшением пустотности (трещиноватости и пористости) горных пород с глубиной, что приводит к падению их водопроницаемости. Многие угольные и рудные шахты на глубине первых сотен метров оказываются безводными или водопритоки в них становятся незначительнымиОб этом же говорят и наблюдения за прорывами в выработанное пространство. Для Донбасса, например, результаты наблюдений показывают, что на верхних горизонтах шахт прорывы воды достигают 150—200 м3/ч, а на нижних не превышают 30— 40 м3/ч.
Глубина горных выработок сказывается и на характере изменения водопритоков под влиянием весенних паводков и атмосферных осадков. А. И. Кравцов отмечает, что при глубине выработок 80—200 м увеличение водопритока наблюдается через несколько суток после сильных дождей, а в Подмосковном угольном бассейне — через несколько часов. При глубине выработок 250—300 ч увеличение притока наступает через 2 мес; для одной из старыми и новыми), с одной стороны, и подземными и поверхностными водами-с другой. Иногда тектонические нарушения обусловливают подпруживание водоносных горизонтов в результате чего в этих горизонтах меняются напор, мощность скорость движения вод и т. д.
Влияние тектонических нарушений на условия обводненности горных выработок отмечалось на угольных шахтах Донбасса, Средней Азии на рудных месторождениях Южного Урала, на сланцевых шахтах Эстонии, в других угольных и рудных районах. В некоторых случаях при пересечении горными выработками тектонических нарушений водопритоки увеличивались здесь в сотни раз.. Так, в 1952 г. на одной из шахт Донбасса при пересечении сбросовой трещины приток воды достиг 1100 м3/ч.
Надо отметить, что гидравлическая связь между отдельными водоносными горизонтами, между поверхностными и подземными водами и горными выработками очень часто осуществляется из-за искусственных пустот, остающихся при некачественном тампонировании разведочных, опытных и водопонижающих скважин. Примеры подработки таких скважин имеются на многих месторождениях.
Особо следует отметить влияние на обводненность действующих горных выработок тех вод, которые скопились в старых шахтах и карьерах (в затопленных старых выработках). Водопритоки этих случаях, как правило, носят катастрофический характер и сопровождаются выносом большого количества рыхлых пород.
Иногда соседние старые выработки являются единственным источником обводнения новых подземных выработок, что приводит к интенсификации процесса пучения глинистых пород почвы этих выработок. 3.3.3. Геологические явления
Естественные геологические процессы и явления очень разнообразны имеют большое распространение и оказывают значительное влияние на инженерно-геологические условия территорий. Геологические процессы характеризуют геодинамическую обстановку месторождений В них, как в фокусе, сходятся различные особенности природной обстановки: рельефа местности, геологического строения гидрогеологических условий, прочности и деформируемости горных пород и т. д. Интерес представляют как глубинные, или эндогенные, геологические процессы (тектонические, сейсмические., так и поверхностные, или экзогенные (эрозия, абразия, карст, выветривание, оползни, сели, плывуны, суффозия, мерзлотные, заболачивание). Особое значение имеют современные процессы и явления, которые оказывают непосредственное влияние на устойчивость сооружений.
Рассматривая условия взаимодействия сооружения с горными породами, можно выделить следующие случаи.
Область взаимодействия соизмерима с объемом однородной породы или меньше его. В этом случае можно вести изучение свойств пород на опытных образцах в лабораторных и полевых условиях и полученные показатели (после соответствующей обработки, применять в качестве нормативных и расчетных.
Область взаимодействия гораздо больше, чем объем однородного монолитного блока пород, и ее можно рассматривать как квазиоднородную. Такая среда работает, как сыпучее тело с коэффициентом трения, близким к характерному для отдельных образцов, поэтому коэффициент трения можно определить в лабораторных условиях, а водопроницаемость — полевыми опытами. Установлено, что с увеличением данной области ее прочность и деформируемость стремятся к постоянным значениям, однако у исследователей пока нет единого мнения о величине масштабного фактора.
Область взаимодействия больше объема однородного структурного блока, но среду нельзя считать квазиоднородной; степень ее неоднородности зависит от соотношения размеров этой области и однородного блока. Установление масштабного эффекта требует специальных лабораторных, полевых и модельных исследований, наблюдений и обратных расчетов с целью определения переходного коэффициента от показателей, характеризующих отдельные образцы, к показателям свойств всей области с учетом ее особенностей (трещиноватости, слоистости и т. д.).
Устойчивость сооружения определяется наличием ослабленных зон больших размеров, представленных трещинами, контактами между слоями, сланцеватостью, слабыми прослойками и т. д. Иногда эти зоны сами по себе могут быть неоднородными, и тогда рассматривается внутренняя ноднородность. Здесь механические свойства изучаются в полевых условиях.
