
- •Contents at a Glance
- •Contents
- •About the Authors
- •About the Technical Reviewer
- •Acknowledgments
- •Introduction
- •Oracle Java Certifications: Overview
- •FAQ 1. What are the different levels of Oracle Java certification exams?
- •FAQ 4. Is OCPJP 7 prerequisite for other Oracle certification exams?
- •FAQ 5. Should I take the OCPJP 7 or OCPJP 6 exam?
- •The OCPJP 7 Exam
- •FAQ 7. How many questions are there in the OCPJP 7 exam?
- •FAQ 8. What is the duration of the OCPJP 7 exam?
- •FAQ 9. What is the cost of the OCPJP 7 exam?
- •FAQ 10. What are the passing scores for the OCPJP 7 exam?
- •FAQ 11. What kinds of questions are asked in the OCPJP 7 exam?
- •FAQ 12. What does the OCPJP 7 exam test for?
- •FAQ 13. I’ve been a Java programmer for last five years. Do I have to prepare for the OCPJP 7 exam?
- •FAQ 14. How do I prepare for the OCPJP 7 exam?
- •FAQ 15. How do I know when I’m ready to take the OCPJP 7 exam?
- •Taking the OCPJP 7 Exam
- •FAQ 16. What are my options to register for the exam?
- •FAQ 17. How do I register for the exam, schedule a day and time for taking the exam, and appear for the exam?
- •The OCPJP 7 Exam: Pretest
- •Answers with Explanations
- •Post-Pretest Evaluation
- •Essentials of OOP
- •FunPaint Application: An Example
- •Foundations of OOP
- •Abstraction
- •Encapsulation
- •Inheritance
- •Polymorphism
- •Class Fundamentals
- •Object Creation
- •Constructors
- •Access Modifiers
- •Public Access Modifier
- •Private Access Modifier
- •Protected and Default Access Modifier
- •Overloading
- •Method Overloading
- •Constructor Overloading
- •Overload resolution
- •Points to Remember
- •Inheritance
- •Runtime Polymorphism
- •An Example
- •Overriding Issues
- •Overriding: Deeper Dive
- •Invoking Superclass Methods
- •Type Conversions
- •Upcasts and Downcasts
- •Casting Between Inconvertible Types
- •Using “instanceof” for Safe Downcasts
- •Java Packages
- •Working with Packages
- •Static Import
- •Summary
- •Abstract Classes
- •Points to Remember
- •Using the “final” Keyword
- •Final Classes
- •Final Methods and Variables
- •Points to Remember
- •Using the “static” Keyword
- •Static Block
- •Points to Remember
- •Flavors of Nested Classes
- •Static Nested Classes (or Interfaces)
- •Points to Remember
- •Inner Classes
- •Points to Remember
- •Local Inner Classes
- •Points to Remember
- •Anonymous Inner Classes
- •Points to Remember
- •Enum Data Types
- •Points to Remember
- •Summary
- •Interfaces
- •Declaring and Using Interfaces
- •Points to Remember
- •Abstract Classes vs. Interfaces
- •Choosing Between an Abstract Class and an Interface
- •Object Composition
- •Composition vs. Inheritance
- •Points to Remember
- •Design Patterns
- •The Singleton Design Pattern
- •Ensuring That Your Singleton Is Indeed a Singleton
- •The Factory Design Pattern
- •Differences Between Factory and Abstract Factory Design Patterns
- •The Data Access Object (DAO) Design Pattern
- •Points to Remember
- •Summary
- •Generics
- •Using Object Type and Type Safety
- •Using the Object Class vs. Generics
- •Container Implementation Using the Object Class
- •Container Implementation Using Generics
- •Creating Generic Classes
- •Diamond Syntax
- •Interoperability of Raw Types and Generic Types
- •Generic Methods
- •Generics and Subtyping
- •Wildcard Parameters
- •Limitations of Wildcards
- •Bounded Wildcards
- •Wildcards in the Collections Class
- •Points to Remember
- •The Collections Framework
- •Why Reusable Classes?
- •Basic Components of the Collections Framework
- •Abstract Classes and Interfaces
- •Concrete Classes
- •List Classes
- •ArrayList Class
- •The ListIterator Interface
- •The LinkedList Class
- •The Set Interface
- •The HashSet Class
- •The TreeSet Class
- •The Map Interface
- •The HashMap Class
- •Overriding the hashCode() Method
- •The NavigableMap Interface
- •The Queue Interface
- •The Deque Interface
- •Comparable and Comparator Interfaces
- •Algorithms (Collections Class)
- •The Arrays Class
- •Methods in the Arrays Class
- •Array as a List
- •Points to Remember
- •Summary
- •Generics
- •Collections Framework
- •Processing Strings
- •String Searching
- •The IndexOf() Method
- •The regionMatches() Method
- •String Parsing
- •String Conversions
- •The Split() Method
- •Regular Expressions
- •Understanding regex Symbols
- •Regex Support in Java
- •Searching and Parsing with regex
- •Replacing Strings with regex
- •String Formatting
- •Format Specifiers
- •Points to Remember
- •Summary
- •Reading and Writing from Console
- •Understanding the Console Class
- •Formatted I/O with the Console Class
- •Special Character Handling in the Console Class
- •Using Streams to Read and Write Files
- •Character Streams and Byte Streams
- •Character Streams
- •Reading Text Files
- •Reading and Writing Text Files
- •“Tokenizing” Text
- •Byte Streams
- •Reading a Byte Stream
- •Data Streams
- •Writing to and Reading from Object Streams: Serialization
- •Serialization: Some More Details
- •Points to Remember
- •Summary
- •A Quick History of I/O APIs
- •Using the Path Interface
- •Getting Path Information
- •Comparing Two Paths
- •Using the Files Class
- •Checking File Properties and Metadata
- •Copying a File
- •Moving a File
- •Deleting a File
- •Walking a File Tree
- •Revisiting File Copy
- •Finding a File
- •Watching a Directory for Changes
- •Points to Remember
- •Summary
- •Introduction to JDBC
- •The Architecture of JDBC
- •Two-Tier and Three-Tier JDBC Architecture
- •Types of JDBC Drivers
- •Setting Up the Database
- •Connecting to a Database Using a JDBC Driver
- •The Connection Interface
- •Connecting to the Database
- •Statement
- •ResultSet
- •Querying the Database
- •Updating the Database
- •Getting the Database Metadata
- •Points to Remember
- •Querying and Updating the Database
- •Performing Transactions
- •Rolling Back Database Operations
- •The RowSet Interface
- •Points to Remember
- •Summary
- •Define the Layout of the JDBC API
- •Connect to a Database by Using a JDBC driver
- •Update and Query a Database
- •Customize the Transaction Behavior of JDBC and Commit Transactions
- •Use the JDBC 4.1 RowSetProvider, RowSetFactory, and RowSet Interfaces
- •Introduction to Exception Handling
- •Throwing Exceptions
- •Unhandled Exceptions
- •Try and Catch Statements
- •Programmatically Accessing the Stack Trace
- •Multiple Catch Blocks
- •Multi-Catch Blocks
- •General Catch Handlers
- •Finally Blocks
- •Points to Remember
- •Try-with-Resources
- •Closing Multiple Resources
- •Points to Remember
- •Exception Types
- •The Exception Class
- •The RuntimeException Class
- •The Error Class
- •The Throws Clause
- •Method Overriding and the Throws Clause
- •Points to Remember
- •Custom Exceptions
- •Assertions
- •Assert Statement
- •How Not to Use Asserts
- •Summary
- •Introduction
- •Locales
- •The Locale Class
- •Getting Locale Details
- •Resource Bundles
- •Using PropertyResourceBundle
- •Using ListResourceBundle
- •Loading a Resource Bundle
- •Naming Convention for Resource Bundles
- •Formatting for Local Culture
- •The NumberFormat Class
- •The Currency Class
- •The DateFormat Class
- •The SimpleDateFormat Class
- •Points to Remember
- •Summary
- •Introduction to Concurrent Programming
- •Important Threading-Related Methods
- •Creating Threads
- •Extending the Thread Class
- •Implementing the Runnable Interface
- •The Start( ) and Run( ) Methods
- •Thread Name, Priority, and Group
- •Using the Thread.sleep() Method
- •Using Thread’s Join Method
- •Asynchronous Execution
- •The States of a Thread
- •Two States in “Runnable” State
- •Concurrent Access Problems
- •Data Races
- •Thread Synchronization
- •Synchronized Blocks
- •Synchronized Methods
- •Synchronized Blocks vs. Synchronized Methods
- •Deadlocks
- •Other Threading Problems
- •Livelocks
- •Lock Starvation
- •The Wait/Notify Mechanism
- •Let’s Solve a Problem
- •More Thread States
- •timed_waiting and blocked States
- •waiting State
- •Using Thread.State enum
- •Understanding IllegalThreadStateException
- •Summary
- •Using java.util.concurrent Collections
- •Semaphore
- •CountDownLatch
- •Exchanger
- •CyclicBarrier
- •Phaser
- •Concurrent Collections
- •Apply Atomic Variables and Locks
- •Atomic Variables
- •Locks
- •Conditions
- •Multiple Conditions on a Lock
- •Use Executors and ThreadPools
- •Executor
- •Callable, Executors, ExecutorService, ThreadPool, and Future
- •ThreadFactory
- •The ThreadLocalRandom Class
- •TimeUnit Enumeration
- •Use the Parallel Fork/Join Framework
- •Useful Classes of the Fork/Join Framework
- •Using the Fork/Join Framework
- •Points to Remember
- •Summary
- •Using java.util.concurrent Collections
- •Applying Atomic Variables and Locks
- •Using Executors and ThreadPools
- •Using the Parallel Fork/Join Framework
- •Chapter 3: Java Class Design
- •Chapter 4: Advanced Class Design
- •Chapter 5: Object-Oriented Design Principles
- •Chapter 6: Generics and Collections
- •Chapter 7: String Processing
- •Chapter 8: Java I/O Fundamentals
- •Chapter 9: Java File I/O (NIO.2)
- •Chapter 10: Building Database Applications with JDBC
- •Chapter 11: Exceptions and Assertions
- •Chapter 12: Localization
- •Chapter 13: Threads
- •Chapter 14: Concurrency
- •OCPJP7 Exam (1Z0-804 a.k.a. Java SE 7 Programmer II) Topics
- •OCPJP 7 Exam (1Z0-805, a.k.a. Upgrade to Java SE 7 Programmer) Topics
- •Answers and Explanations
- •Answer Sheet
- •Answers and Explanations
- •Index

Chapter 11
Exceptions and Assertions
|
Use throw and throws statements |
|
Use the try statement with multi-catch, and fanally clauses |
Exam Topics |
Autoclose resources with a try-with-resources statement |
|
Create custom exceptions |
|
Test invariants by using assertions |
In this chapter, you’ll learn about Java’s support for exception handling in detail. You’ll first learn the basic concepts behind exception handling and then you’ll learn how to throw, catch, and rethrow exceptions. You’ll also learn about the recently added language features such as try-with-resources and multi-catch statements. Following that, you’ll learn how to define your own exception classes (custom exceptions). Finally, we’ll discuss the related topic of assertions and teach you how to use them in your programs. Most of the programming examples in this chapter make use of I/O functions (Chapters 8 and 9) to illustrate the concepts of exception handling.
Introduction to Exception Handling
As programmers, we are optimistic—we just write code to solve the problem at hand and expect it to work without any problems. However, things do go wrong (more often than we’d like!), so we should always anticipate errors and exceptions, and write code to handle the exceptional conditions.
Java has built-in support for exceptions. The Java language supports exception handling in the form of the throw, throws, try, catch, and finally keywords. See Figure 11-1 to understand the basic syntax of these keywords.
317

Chapter 11 ■ Exceptions and Assertions
The checked exception ACheckedException can be thrown from the body of the method foo( ).
The code inside try block can |
public static void foo() throws ACheckedException { |
||
try |
{ |
||
throw exceptions. |
|||
|
// some code that can throw an exception ... |
||
|
|
If the code in try block throws an exception |
} catch |
(Exception e){ |
|
|
// handle the exception |
||
of type Exception or its derived classes, this |
} |
||
catch block code will handle it. |
{ |
|
|
|
finally |
|
|
The code in finally block will always be |
} |
// release resources acquired in the try block |
|
|
|
||
executed (doesn’t matter if the try block |
|
|
|
throw an exception or not). |
|
|
{ |
|
if(someCondition) |
||
This throw statements throws the custom |
} else { |
throw new ACheckedException(); |
|
checked exception (and since there is no |
|
|
|
catch hander for this exception, it must be |
|
throw new AnUnCheckedException(); |
|
declared in throws clause of the metnod). |
} |
|
|
} |
|
|
|
|
|
|
This throw statement throws AnUncheckedException (since this is an unchecked exception it is not declared in the throws clause).
Figure 11-1. The basic syntax of exception handling-related keywords
Throwing Exceptions
Listing 11-1 is a very simple programming example in which you want to echo the text typed as command-line arguments back to the user. Assume that the user must type some text as command-line arguments to echo, or else you need to inform the user about the “error condition.”
Listing 11-1. Echo.java
// A simple program without exception handling code class Echo {
public static void main(String []args) {
if(args.length == 0) {
// no arguments passed – display an error to the user
System.out.println("Error: No input passed to echo command... ");
System.exit(-1);
}
else {
for(String str : args) {
// command-line arguments are separated and passed as an array
// print them by adding a space between the array elements
System.out.print(str + " ");
}
}
}
}
318
q