
- •Contents at a Glance
- •Contents
- •About the Authors
- •About the Technical Reviewer
- •Acknowledgments
- •Introduction
- •Oracle Java Certifications: Overview
- •FAQ 1. What are the different levels of Oracle Java certification exams?
- •FAQ 4. Is OCPJP 7 prerequisite for other Oracle certification exams?
- •FAQ 5. Should I take the OCPJP 7 or OCPJP 6 exam?
- •The OCPJP 7 Exam
- •FAQ 7. How many questions are there in the OCPJP 7 exam?
- •FAQ 8. What is the duration of the OCPJP 7 exam?
- •FAQ 9. What is the cost of the OCPJP 7 exam?
- •FAQ 10. What are the passing scores for the OCPJP 7 exam?
- •FAQ 11. What kinds of questions are asked in the OCPJP 7 exam?
- •FAQ 12. What does the OCPJP 7 exam test for?
- •FAQ 13. I’ve been a Java programmer for last five years. Do I have to prepare for the OCPJP 7 exam?
- •FAQ 14. How do I prepare for the OCPJP 7 exam?
- •FAQ 15. How do I know when I’m ready to take the OCPJP 7 exam?
- •Taking the OCPJP 7 Exam
- •FAQ 16. What are my options to register for the exam?
- •FAQ 17. How do I register for the exam, schedule a day and time for taking the exam, and appear for the exam?
- •The OCPJP 7 Exam: Pretest
- •Answers with Explanations
- •Post-Pretest Evaluation
- •Essentials of OOP
- •FunPaint Application: An Example
- •Foundations of OOP
- •Abstraction
- •Encapsulation
- •Inheritance
- •Polymorphism
- •Class Fundamentals
- •Object Creation
- •Constructors
- •Access Modifiers
- •Public Access Modifier
- •Private Access Modifier
- •Protected and Default Access Modifier
- •Overloading
- •Method Overloading
- •Constructor Overloading
- •Overload resolution
- •Points to Remember
- •Inheritance
- •Runtime Polymorphism
- •An Example
- •Overriding Issues
- •Overriding: Deeper Dive
- •Invoking Superclass Methods
- •Type Conversions
- •Upcasts and Downcasts
- •Casting Between Inconvertible Types
- •Using “instanceof” for Safe Downcasts
- •Java Packages
- •Working with Packages
- •Static Import
- •Summary
- •Abstract Classes
- •Points to Remember
- •Using the “final” Keyword
- •Final Classes
- •Final Methods and Variables
- •Points to Remember
- •Using the “static” Keyword
- •Static Block
- •Points to Remember
- •Flavors of Nested Classes
- •Static Nested Classes (or Interfaces)
- •Points to Remember
- •Inner Classes
- •Points to Remember
- •Local Inner Classes
- •Points to Remember
- •Anonymous Inner Classes
- •Points to Remember
- •Enum Data Types
- •Points to Remember
- •Summary
- •Interfaces
- •Declaring and Using Interfaces
- •Points to Remember
- •Abstract Classes vs. Interfaces
- •Choosing Between an Abstract Class and an Interface
- •Object Composition
- •Composition vs. Inheritance
- •Points to Remember
- •Design Patterns
- •The Singleton Design Pattern
- •Ensuring That Your Singleton Is Indeed a Singleton
- •The Factory Design Pattern
- •Differences Between Factory and Abstract Factory Design Patterns
- •The Data Access Object (DAO) Design Pattern
- •Points to Remember
- •Summary
- •Generics
- •Using Object Type and Type Safety
- •Using the Object Class vs. Generics
- •Container Implementation Using the Object Class
- •Container Implementation Using Generics
- •Creating Generic Classes
- •Diamond Syntax
- •Interoperability of Raw Types and Generic Types
- •Generic Methods
- •Generics and Subtyping
- •Wildcard Parameters
- •Limitations of Wildcards
- •Bounded Wildcards
- •Wildcards in the Collections Class
- •Points to Remember
- •The Collections Framework
- •Why Reusable Classes?
- •Basic Components of the Collections Framework
- •Abstract Classes and Interfaces
- •Concrete Classes
- •List Classes
- •ArrayList Class
- •The ListIterator Interface
- •The LinkedList Class
- •The Set Interface
- •The HashSet Class
- •The TreeSet Class
- •The Map Interface
- •The HashMap Class
- •Overriding the hashCode() Method
- •The NavigableMap Interface
- •The Queue Interface
- •The Deque Interface
- •Comparable and Comparator Interfaces
- •Algorithms (Collections Class)
- •The Arrays Class
- •Methods in the Arrays Class
- •Array as a List
- •Points to Remember
- •Summary
- •Generics
- •Collections Framework
- •Processing Strings
- •String Searching
- •The IndexOf() Method
- •The regionMatches() Method
- •String Parsing
- •String Conversions
- •The Split() Method
- •Regular Expressions
- •Understanding regex Symbols
- •Regex Support in Java
- •Searching and Parsing with regex
- •Replacing Strings with regex
- •String Formatting
- •Format Specifiers
- •Points to Remember
- •Summary
- •Reading and Writing from Console
- •Understanding the Console Class
- •Formatted I/O with the Console Class
- •Special Character Handling in the Console Class
- •Using Streams to Read and Write Files
- •Character Streams and Byte Streams
- •Character Streams
- •Reading Text Files
- •Reading and Writing Text Files
- •“Tokenizing” Text
- •Byte Streams
- •Reading a Byte Stream
- •Data Streams
- •Writing to and Reading from Object Streams: Serialization
- •Serialization: Some More Details
- •Points to Remember
- •Summary
- •A Quick History of I/O APIs
- •Using the Path Interface
- •Getting Path Information
- •Comparing Two Paths
- •Using the Files Class
- •Checking File Properties and Metadata
- •Copying a File
- •Moving a File
- •Deleting a File
- •Walking a File Tree
- •Revisiting File Copy
- •Finding a File
- •Watching a Directory for Changes
- •Points to Remember
- •Summary
- •Introduction to JDBC
- •The Architecture of JDBC
- •Two-Tier and Three-Tier JDBC Architecture
- •Types of JDBC Drivers
- •Setting Up the Database
- •Connecting to a Database Using a JDBC Driver
- •The Connection Interface
- •Connecting to the Database
- •Statement
- •ResultSet
- •Querying the Database
- •Updating the Database
- •Getting the Database Metadata
- •Points to Remember
- •Querying and Updating the Database
- •Performing Transactions
- •Rolling Back Database Operations
- •The RowSet Interface
- •Points to Remember
- •Summary
- •Define the Layout of the JDBC API
- •Connect to a Database by Using a JDBC driver
- •Update and Query a Database
- •Customize the Transaction Behavior of JDBC and Commit Transactions
- •Use the JDBC 4.1 RowSetProvider, RowSetFactory, and RowSet Interfaces
- •Introduction to Exception Handling
- •Throwing Exceptions
- •Unhandled Exceptions
- •Try and Catch Statements
- •Programmatically Accessing the Stack Trace
- •Multiple Catch Blocks
- •Multi-Catch Blocks
- •General Catch Handlers
- •Finally Blocks
- •Points to Remember
- •Try-with-Resources
- •Closing Multiple Resources
- •Points to Remember
- •Exception Types
- •The Exception Class
- •The RuntimeException Class
- •The Error Class
- •The Throws Clause
- •Method Overriding and the Throws Clause
- •Points to Remember
- •Custom Exceptions
- •Assertions
- •Assert Statement
- •How Not to Use Asserts
- •Summary
- •Introduction
- •Locales
- •The Locale Class
- •Getting Locale Details
- •Resource Bundles
- •Using PropertyResourceBundle
- •Using ListResourceBundle
- •Loading a Resource Bundle
- •Naming Convention for Resource Bundles
- •Formatting for Local Culture
- •The NumberFormat Class
- •The Currency Class
- •The DateFormat Class
- •The SimpleDateFormat Class
- •Points to Remember
- •Summary
- •Introduction to Concurrent Programming
- •Important Threading-Related Methods
- •Creating Threads
- •Extending the Thread Class
- •Implementing the Runnable Interface
- •The Start( ) and Run( ) Methods
- •Thread Name, Priority, and Group
- •Using the Thread.sleep() Method
- •Using Thread’s Join Method
- •Asynchronous Execution
- •The States of a Thread
- •Two States in “Runnable” State
- •Concurrent Access Problems
- •Data Races
- •Thread Synchronization
- •Synchronized Blocks
- •Synchronized Methods
- •Synchronized Blocks vs. Synchronized Methods
- •Deadlocks
- •Other Threading Problems
- •Livelocks
- •Lock Starvation
- •The Wait/Notify Mechanism
- •Let’s Solve a Problem
- •More Thread States
- •timed_waiting and blocked States
- •waiting State
- •Using Thread.State enum
- •Understanding IllegalThreadStateException
- •Summary
- •Using java.util.concurrent Collections
- •Semaphore
- •CountDownLatch
- •Exchanger
- •CyclicBarrier
- •Phaser
- •Concurrent Collections
- •Apply Atomic Variables and Locks
- •Atomic Variables
- •Locks
- •Conditions
- •Multiple Conditions on a Lock
- •Use Executors and ThreadPools
- •Executor
- •Callable, Executors, ExecutorService, ThreadPool, and Future
- •ThreadFactory
- •The ThreadLocalRandom Class
- •TimeUnit Enumeration
- •Use the Parallel Fork/Join Framework
- •Useful Classes of the Fork/Join Framework
- •Using the Fork/Join Framework
- •Points to Remember
- •Summary
- •Using java.util.concurrent Collections
- •Applying Atomic Variables and Locks
- •Using Executors and ThreadPools
- •Using the Parallel Fork/Join Framework
- •Chapter 3: Java Class Design
- •Chapter 4: Advanced Class Design
- •Chapter 5: Object-Oriented Design Principles
- •Chapter 6: Generics and Collections
- •Chapter 7: String Processing
- •Chapter 8: Java I/O Fundamentals
- •Chapter 9: Java File I/O (NIO.2)
- •Chapter 10: Building Database Applications with JDBC
- •Chapter 11: Exceptions and Assertions
- •Chapter 12: Localization
- •Chapter 13: Threads
- •Chapter 14: Concurrency
- •OCPJP7 Exam (1Z0-804 a.k.a. Java SE 7 Programmer II) Topics
- •OCPJP 7 Exam (1Z0-805, a.k.a. Upgrade to Java SE 7 Programmer) Topics
- •Answers and Explanations
- •Answer Sheet
- •Answers and Explanations
- •Index

Chapter 4 ■Advanced Class Design
You need to prefix the object reference of the outer class to create an instance of the inner class. In this case, it is a this reference, so you are prefixing it with this before the new operator.
Every inner class is associated with an instance of the outer class. In other words, an inner class is always associated with an enclosing object.
The outer and inner classes share a special relationship, like friends or members of same family. Member accesses are valid irrespective of the access specifiers such as private. However, there is subtle difference. You can access members of an outer class within an inner class without creating an instance; but this is not the case with an outer class. You need to create an instance of inner class in order to access the members (any members, including private members) of the inner class.
One limitation of inner classes is that you cannot declare static members in an inner class, like this:
class Outer {
class Inner {
static int i = 10;
}
}
If you try to do so, you’ll get the following compiler error:
Outer.java:3: inner classes cannot have static declarations static int i = 10;
Points to Remember
Here are some important rules about inner classes and interfaces that might prove useful in the OCPJP 7 exam:
•The accessibility (public, protected, etc.) of the inner class is defined by the outer class.
•Just like top-level classes, an inner class can extend a class or can implement interfaces. Similarly, an inner class can be extended by other classes, and an inner interface can be implemented or extended by other classes or interfaces.
•An inner class can be declared final or abstract.
•Inner classes can have inner classes, but you’ll have a hard time reading or understanding such complex nesting of classes. (Meaning: Avoid them!)
Local Inner Classes
A local inner class is defined in a code block (say, in a method, constructor, or initialization block). Unlike static nested classes and inner classes, local inner classes are not members of an outer class; they are just local to the method or code in which they are defined.
99
Chapter 4 ■Advanced Class Design
Here is an example of the general syntax of a local class:
class SomeClass {
void someFunction() { class Local { }
}
}
As you can see in this code, Local is a class defined within someFunction. It is not available outside of someFunction, not even to the members of the SomeClass. Since you cannot declare a local variable static, you also cannot declare a local class static.
Since you cannot define methods in interfaces, you cannot have local classes or interfaces inside an interface. Nor can you create local interfaces. In other words, you cannot define interfaces inside methods, constructors, and initialization blocks.
Now that you understand the syntax, let’s jump into a practical example. In the FunPaint application, you implemented the Color class as a static nested class. Here is the code you saw in that discussion:
abstract class Shape {
public static class Color {
int m_red, m_green, m_blue; public Color() {
this(0, 0, 0);
}
public Color(int red, int green, int blue) {
m_red = red; m_green = green; m_blue = blue;
}
public String toString() {
return " red = " + m_red + " green = " + m_green + " blue = " + m_blue;
}
// other color members elided
}
// other Shape members elided
}
Now, this toString() method displays a string representation of Color. Assume that you need to display help messages at the bottom of the screen in the FunPaint application. For that you need descriptive messages. Displaying messages in this cryptic format is not very helpful to the reader. So, you want to display the Color string in the following format: "You selected a color with RGB values red = 0 green = 0 blue = 0". For that, you must define a method named getDescriptiveColor() in the class StatusReporter. In getDescriptiveColor(), you must create a derived class of Shape.Color in which the toString method returns this descriptive message. Listing 4-7 is an implementation using local classes.
Listing 4-7. StatusReporter.java
class StatusReporter {
//important to note that the argument "color" is declared final
//otherwise, the local inner class DescriptiveColor will not be able to use it!! static Shape.Color getDesciptiveColor(final Shape.Color color) {
//local class DescriptiveColor that extends Shape.Color class
class DescriptiveColor extends Shape.Color {
100

Chapter 4 ■Advanced Class Design
public String toString() {
return "You selected a color with RGB values " + color;
}
}
return new DescriptiveColor();
}
public static void main(String []args) { Shape.Color descriptiveColor =
StatusReporter.getDesciptiveColor(new Shape.Color(0, 0, 0)); System.out.println(descriptiveColor);
}
}
The main method checks if the StatusReporter works fine. This program prints
You selected a color with RGB values red = 0 green = 0 blue = 0
Let’s see how the local class was defined. The getDescriptiveColor() method takes the plain Shape.Color class object and returns a Shape.Color object. Inside the getDescriptiveColor() method, you have defined the class DescriptiveColor, which is local to this method. This DescriptiveColor is a derived class of Shape.Color. Inside the DescriptiveColor class, the only method defined is the toString() method, which overrides the base class
Shape.Color toString() method. After the definition of the DescriptiveColor class, the getDescriptiveColor class creates an object of the DescriptiveColor class and returns it.
In the Test class, you can see a main() method that just calls the StatusReporter.getDescriptiveColor() method and stores the result in a Shape.Color reference. You will notice that the getDescritiveColor() method returns a DescriptiveColor object, which derives from Shape.Color, so the descriptiveColor variable initialization works fine. In the println, the dynamic type of descriptiveColor is a DescriptiveColor object, and hence the detailed description of the color object is printed.
Did you notice another feature in the getDescriptiveColor() method? Its argument is declared final. What if you remove the final qualifier, as in the following code?
static Shape.Color getDesciptiveColor(Shape.Color color)
Well, you’ll get the following compiler error:
StatusReporter.java:24: local variable color is accessed from within inner class; needs to be declared final
return "You selected a color with RGB values " + color;
^
1 error
Why? One thing you need to remember about local classes is that you can pass only final variables to a local class.
You can pass only final variables to a local inner class.
101