
- •Contents at a Glance
- •Contents
- •About the Authors
- •About the Technical Reviewer
- •Acknowledgments
- •Introduction
- •Oracle Java Certifications: Overview
- •FAQ 1. What are the different levels of Oracle Java certification exams?
- •FAQ 4. Is OCPJP 7 prerequisite for other Oracle certification exams?
- •FAQ 5. Should I take the OCPJP 7 or OCPJP 6 exam?
- •The OCPJP 7 Exam
- •FAQ 7. How many questions are there in the OCPJP 7 exam?
- •FAQ 8. What is the duration of the OCPJP 7 exam?
- •FAQ 9. What is the cost of the OCPJP 7 exam?
- •FAQ 10. What are the passing scores for the OCPJP 7 exam?
- •FAQ 11. What kinds of questions are asked in the OCPJP 7 exam?
- •FAQ 12. What does the OCPJP 7 exam test for?
- •FAQ 13. I’ve been a Java programmer for last five years. Do I have to prepare for the OCPJP 7 exam?
- •FAQ 14. How do I prepare for the OCPJP 7 exam?
- •FAQ 15. How do I know when I’m ready to take the OCPJP 7 exam?
- •Taking the OCPJP 7 Exam
- •FAQ 16. What are my options to register for the exam?
- •FAQ 17. How do I register for the exam, schedule a day and time for taking the exam, and appear for the exam?
- •The OCPJP 7 Exam: Pretest
- •Answers with Explanations
- •Post-Pretest Evaluation
- •Essentials of OOP
- •FunPaint Application: An Example
- •Foundations of OOP
- •Abstraction
- •Encapsulation
- •Inheritance
- •Polymorphism
- •Class Fundamentals
- •Object Creation
- •Constructors
- •Access Modifiers
- •Public Access Modifier
- •Private Access Modifier
- •Protected and Default Access Modifier
- •Overloading
- •Method Overloading
- •Constructor Overloading
- •Overload resolution
- •Points to Remember
- •Inheritance
- •Runtime Polymorphism
- •An Example
- •Overriding Issues
- •Overriding: Deeper Dive
- •Invoking Superclass Methods
- •Type Conversions
- •Upcasts and Downcasts
- •Casting Between Inconvertible Types
- •Using “instanceof” for Safe Downcasts
- •Java Packages
- •Working with Packages
- •Static Import
- •Summary
- •Abstract Classes
- •Points to Remember
- •Using the “final” Keyword
- •Final Classes
- •Final Methods and Variables
- •Points to Remember
- •Using the “static” Keyword
- •Static Block
- •Points to Remember
- •Flavors of Nested Classes
- •Static Nested Classes (or Interfaces)
- •Points to Remember
- •Inner Classes
- •Points to Remember
- •Local Inner Classes
- •Points to Remember
- •Anonymous Inner Classes
- •Points to Remember
- •Enum Data Types
- •Points to Remember
- •Summary
- •Interfaces
- •Declaring and Using Interfaces
- •Points to Remember
- •Abstract Classes vs. Interfaces
- •Choosing Between an Abstract Class and an Interface
- •Object Composition
- •Composition vs. Inheritance
- •Points to Remember
- •Design Patterns
- •The Singleton Design Pattern
- •Ensuring That Your Singleton Is Indeed a Singleton
- •The Factory Design Pattern
- •Differences Between Factory and Abstract Factory Design Patterns
- •The Data Access Object (DAO) Design Pattern
- •Points to Remember
- •Summary
- •Generics
- •Using Object Type and Type Safety
- •Using the Object Class vs. Generics
- •Container Implementation Using the Object Class
- •Container Implementation Using Generics
- •Creating Generic Classes
- •Diamond Syntax
- •Interoperability of Raw Types and Generic Types
- •Generic Methods
- •Generics and Subtyping
- •Wildcard Parameters
- •Limitations of Wildcards
- •Bounded Wildcards
- •Wildcards in the Collections Class
- •Points to Remember
- •The Collections Framework
- •Why Reusable Classes?
- •Basic Components of the Collections Framework
- •Abstract Classes and Interfaces
- •Concrete Classes
- •List Classes
- •ArrayList Class
- •The ListIterator Interface
- •The LinkedList Class
- •The Set Interface
- •The HashSet Class
- •The TreeSet Class
- •The Map Interface
- •The HashMap Class
- •Overriding the hashCode() Method
- •The NavigableMap Interface
- •The Queue Interface
- •The Deque Interface
- •Comparable and Comparator Interfaces
- •Algorithms (Collections Class)
- •The Arrays Class
- •Methods in the Arrays Class
- •Array as a List
- •Points to Remember
- •Summary
- •Generics
- •Collections Framework
- •Processing Strings
- •String Searching
- •The IndexOf() Method
- •The regionMatches() Method
- •String Parsing
- •String Conversions
- •The Split() Method
- •Regular Expressions
- •Understanding regex Symbols
- •Regex Support in Java
- •Searching and Parsing with regex
- •Replacing Strings with regex
- •String Formatting
- •Format Specifiers
- •Points to Remember
- •Summary
- •Reading and Writing from Console
- •Understanding the Console Class
- •Formatted I/O with the Console Class
- •Special Character Handling in the Console Class
- •Using Streams to Read and Write Files
- •Character Streams and Byte Streams
- •Character Streams
- •Reading Text Files
- •Reading and Writing Text Files
- •“Tokenizing” Text
- •Byte Streams
- •Reading a Byte Stream
- •Data Streams
- •Writing to and Reading from Object Streams: Serialization
- •Serialization: Some More Details
- •Points to Remember
- •Summary
- •A Quick History of I/O APIs
- •Using the Path Interface
- •Getting Path Information
- •Comparing Two Paths
- •Using the Files Class
- •Checking File Properties and Metadata
- •Copying a File
- •Moving a File
- •Deleting a File
- •Walking a File Tree
- •Revisiting File Copy
- •Finding a File
- •Watching a Directory for Changes
- •Points to Remember
- •Summary
- •Introduction to JDBC
- •The Architecture of JDBC
- •Two-Tier and Three-Tier JDBC Architecture
- •Types of JDBC Drivers
- •Setting Up the Database
- •Connecting to a Database Using a JDBC Driver
- •The Connection Interface
- •Connecting to the Database
- •Statement
- •ResultSet
- •Querying the Database
- •Updating the Database
- •Getting the Database Metadata
- •Points to Remember
- •Querying and Updating the Database
- •Performing Transactions
- •Rolling Back Database Operations
- •The RowSet Interface
- •Points to Remember
- •Summary
- •Define the Layout of the JDBC API
- •Connect to a Database by Using a JDBC driver
- •Update and Query a Database
- •Customize the Transaction Behavior of JDBC and Commit Transactions
- •Use the JDBC 4.1 RowSetProvider, RowSetFactory, and RowSet Interfaces
- •Introduction to Exception Handling
- •Throwing Exceptions
- •Unhandled Exceptions
- •Try and Catch Statements
- •Programmatically Accessing the Stack Trace
- •Multiple Catch Blocks
- •Multi-Catch Blocks
- •General Catch Handlers
- •Finally Blocks
- •Points to Remember
- •Try-with-Resources
- •Closing Multiple Resources
- •Points to Remember
- •Exception Types
- •The Exception Class
- •The RuntimeException Class
- •The Error Class
- •The Throws Clause
- •Method Overriding and the Throws Clause
- •Points to Remember
- •Custom Exceptions
- •Assertions
- •Assert Statement
- •How Not to Use Asserts
- •Summary
- •Introduction
- •Locales
- •The Locale Class
- •Getting Locale Details
- •Resource Bundles
- •Using PropertyResourceBundle
- •Using ListResourceBundle
- •Loading a Resource Bundle
- •Naming Convention for Resource Bundles
- •Formatting for Local Culture
- •The NumberFormat Class
- •The Currency Class
- •The DateFormat Class
- •The SimpleDateFormat Class
- •Points to Remember
- •Summary
- •Introduction to Concurrent Programming
- •Important Threading-Related Methods
- •Creating Threads
- •Extending the Thread Class
- •Implementing the Runnable Interface
- •The Start( ) and Run( ) Methods
- •Thread Name, Priority, and Group
- •Using the Thread.sleep() Method
- •Using Thread’s Join Method
- •Asynchronous Execution
- •The States of a Thread
- •Two States in “Runnable” State
- •Concurrent Access Problems
- •Data Races
- •Thread Synchronization
- •Synchronized Blocks
- •Synchronized Methods
- •Synchronized Blocks vs. Synchronized Methods
- •Deadlocks
- •Other Threading Problems
- •Livelocks
- •Lock Starvation
- •The Wait/Notify Mechanism
- •Let’s Solve a Problem
- •More Thread States
- •timed_waiting and blocked States
- •waiting State
- •Using Thread.State enum
- •Understanding IllegalThreadStateException
- •Summary
- •Using java.util.concurrent Collections
- •Semaphore
- •CountDownLatch
- •Exchanger
- •CyclicBarrier
- •Phaser
- •Concurrent Collections
- •Apply Atomic Variables and Locks
- •Atomic Variables
- •Locks
- •Conditions
- •Multiple Conditions on a Lock
- •Use Executors and ThreadPools
- •Executor
- •Callable, Executors, ExecutorService, ThreadPool, and Future
- •ThreadFactory
- •The ThreadLocalRandom Class
- •TimeUnit Enumeration
- •Use the Parallel Fork/Join Framework
- •Useful Classes of the Fork/Join Framework
- •Using the Fork/Join Framework
- •Points to Remember
- •Summary
- •Using java.util.concurrent Collections
- •Applying Atomic Variables and Locks
- •Using Executors and ThreadPools
- •Using the Parallel Fork/Join Framework
- •Chapter 3: Java Class Design
- •Chapter 4: Advanced Class Design
- •Chapter 5: Object-Oriented Design Principles
- •Chapter 6: Generics and Collections
- •Chapter 7: String Processing
- •Chapter 8: Java I/O Fundamentals
- •Chapter 9: Java File I/O (NIO.2)
- •Chapter 10: Building Database Applications with JDBC
- •Chapter 11: Exceptions and Assertions
- •Chapter 12: Localization
- •Chapter 13: Threads
- •Chapter 14: Concurrency
- •OCPJP7 Exam (1Z0-804 a.k.a. Java SE 7 Programmer II) Topics
- •OCPJP 7 Exam (1Z0-805, a.k.a. Upgrade to Java SE 7 Programmer) Topics
- •Answers and Explanations
- •Answer Sheet
- •Answers and Explanations
- •Index

Chapter 3 ■ Java Class Design
A.Compiler error: attempting to assign weaker access privileges; toString was public in Object.
B.Compiles without errors, and when run, it prints the following: The color is: red = 10 green = 10 blue = 10.
C.Compiles without errors, and when run, it prints the following: The color is: red = 0 green = 0 blue = 0.
D.Compiles without errors, and when run, it throws ClassCastException.
Answer: A. Compiler error: attempting to assign weaker access privileges; toString was public in Object.
(No access modifier is specified for the toString() method. Object's toString() method has a public access modifier; you cannot reduce the visibility of the method. Hence, it will result in a compiler error).
Summary
Foundations of OOP
•Encapsulation: Combining data and the functions operating on it as a single unit.
•Abstraction: Hiding lower-level details and exposing only the essential and relevant details to the users.
•Inheritance: Creating hierarchical relationships between related classes.
•Polymorphism: Interpreting the same message (i.e., method call) with different meanings depending on the context.
Class Foundations
•A “class” is a template (or blueprint) and an “object” is an instance of a class.
•A constructor does not have a return type.
•You cannot access the private methods of the base class in the derived class.
•You can access the protected method either from a class in the same package (just like package private or default) as well as from a derived class.
•You can also access a method with a default access modifier if it is in the same package.
•You can access public methods of a class from any other class.
Overloading
•Method overloading: Creating methods with same name but different types and/or numbers of parameters.
•You can have overloaded constructors. You can call a constructor of the same class in another constructor using the this keyword.
•Overload resolution is the process by which the compiler looks to resolve a call when overloaded definitions of a method are available.
84
Chapter 3 ■ Java Class Design
Inheritance
•Inheritance is also called an “is-a” relationship.
•Resolving a method call based on the dynamic type of the object is referred to as runtime polymorphism.
•In overriding, the name of the method, number of arguments, types of arguments, and return type should match exactly.
•In covariant return types, you can provide the derived class of the return type in the overriding method.
•You use the super keyword to call base class methods.
•Overloading is an example of static polymorphism (early binding) while overriding is an example of dynamic polymorphism (late binding).
•You don’t need to do an explicit cast for doing an upcast. An upcast will always succeed.
•You need to do an explicit cast for doing a downcast. A downcast may fail. So you can use the instanceof operator to see if a downcast is valid.
Java Packages
•A package is a scoping construct to categorize your classes and to provide namespace management.
85